Metric Affine Geometry


Book Description

Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.




Affine Differential Geometry


Book Description

This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.




Orthogonality and Spacetime Geometry


Book Description

This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them. The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma trix represent ability of certain projective transformations (involu tions, polarities). I have tried to make the work sufficiently self contained that it may be used as the basis for a course at the ad vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra.




Methods of Information Geometry


Book Description

Information geometry provides the mathematical sciences with a fresh framework of analysis. This book presents a comprehensive introduction to the mathematical foundation of information geometry. It provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, and convex analysis.




Projective Geometry and Projective Metrics


Book Description

This text examines the 3 classical geometries and their relationship to general geometric structures, with particular focus on affine geometry, projective metrics, non-Euclidean geometry, and spatial geometry. 1953 edition.




Vector Geometry


Book Description

Concise undergraduate-level text by a prominent mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement. Includes answers to exercises. 1962 edition.




Geometry and Convexity


Book Description

This text assumes no prerequisites, offering an easy-to-read treatment with simple notation and clear, complete proofs. From motivation to definition, its explanations feature concrete examples and theorems. 1979 edition.




Geometric Methods and Applications


Book Description

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.







Affine and Projective Geometry


Book Description

An important new perspective on AFFINE AND PROJECTIVEGEOMETRY This innovative book treats math majors and math education studentsto a fresh look at affine and projective geometry from algebraic,synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninetyillustrations, and numerous examples and exercises, coveringmaterial for two semesters of upper-level undergraduatemathematics. The first part of the book deals with the correlationbetween synthetic geometry and linear algebra. In the second part,geometry is used to introduce lattice theory, and the bookculminates with the fundamental theorem of projectivegeometry. While emphasizing affine geometry and its basis in Euclideanconcepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with itsnontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to provetheorems in another * Provides opportunities for further investigation of mathematicsby various means, including historical references at the ends ofchapters Throughout, the text explores geometry's correlation to algebra inways that are meant to foster inquiry and develop mathematicalinsights whether or not one has a background in algebra. Theinsight offered is particularly important for prospective secondaryteachers who must major in the subject they teach to fulfill thelicensing requirements of many states. Affine and ProjectiveGeometry's broad scope and its communicative tone make it an idealchoice for all students and professionals who would like to furthertheir understanding of things mathematical.