Micro and Nanolignin in Aqueous Dispersions and Polymers


Book Description

Micro and Nanolignin in Aqueous Dispersions and Polymers: Interactions, Properties, and Applications presents the very latest research on lignin biorefinery treatments, production, chemistry, and refining, exploring a range of innovative applications of lignin and lignin-based composites at both the micro and the nanoscale. The book begins by presenting the latest developments in extraction methods and properties, with topics including methods for value-added microlignin, color characteristics, refining and functionalization, depolymerization for phenolic monomer production, and production of sulphur-free lignin nanoparticles. This is followed by in-depth sections focusing on the preparation of lignin for advanced applications at the microscale, then at the nanoscale, covering a range of areas such as construction, fiber manufacturing, food packaging, biomedicine, wood preservation, wastewater treatment, and agriculture. This valuable resource enables the reader to identify the high added value of a biomass residue and supports possible development and use for mass and niche high impact application sectors. This information is of interest to researchers, scientists, and advanced students, across bio-based polymers and bio-composites, polymer science and engineering, nanomaterials, chemistry, sustainable materials, materials science, and chemical engineering. Moreover, it is also addressed to the professionals that as well as those in an R&D industrial setting to are looking on ideas and perspectives on how to utilize bio-based materials in advanced industrial applications. - Provides detailed information on extraction methods, properties, refining and functionalization processes - Guides the reader through the preparation of lignin both at the micro and nanoscale, as a filler, a matrix, and in all-lignin composites - Takes a design-for-application approach, opening the door to high value applications across a range of sectors




Carbon for Micro and Nano Devices


Book Description

Micro and nano devices are an integral part of modern technology. To address the requirements of the state-of-the-art technology, topics are selected from both chip-based and flexible electronics. A wide range of carbon materials including graphene, carbon nanotube, glass-like carbon, porous carbon, carbon black, graphite, carbon nanofiber, laser-patterned carbon and heteroatom containing carbon are covered. This goal is to elucidate fundamental carbon material science along with compatible micro- and nanofabrication techniques. Real-life example of sensors, energy storage and generation devices, MEMS, NEMS and implantable bioelectronics enable visualization of the outcome of described processes. Students will also benefit from the attractive aspects of carbon science explained in simple terms. Hybridization, allotrope classification and microstructural models are presented with a whole new outlook. Discussions on less-studied, hypothetical and undiscovered carbon forms render the contents futuristic and highly appealing.




Flame Retardant Nanocomposites


Book Description

The huge increase in potential applications of polymer nanocomposites have made it necessary for researchers to address the fire safety issues of these materials.Flame Retardant Nanocomposites: Emergent Nanoparticles and their Applications covers the broad area of flame- retardant polymer nanocomposites, their preparation, fire retardant mechanisms and the various factors that affect them. The influence of various nanoparticles on their flammability is discussed in detail, as well as their structure, free radical trapping ability, char formation, and eventual barrier properties.The book will be a valuable reference resource for students, researchers and engineers covering this important field of research. The chapters discuss the effect of different nanoparticles, their dispersion, and effect of different polymer structures on fire retardant properties, as well as possible applications. - Provides a detailed overview of fire retardant polymer nanocomposite systems, including different nanofillers - Describes fire mechanisms behind nanocomposite structure and morphology - Covers the latest developments and the most recent applications in industry, defense, and space







Lignin Chemistry


Book Description

Lignin Chemistry A thorough reference guide to Lignin Chemistry, from inherent structure revealing to transformation into chemicals, fuels, and materials Climate change, driven by rising greenhouse gas emissions, is the defining challenge of our time. Reducing our dependence on non-renewable resources such as fossil fuels will require alternative, more sustainable resources. Lignin, the only widely-occurring, renewable, aromatic bio-polymer in Nature, has a range of application potential in the production of chemicals, fuels, and other industrial materials. Lignin science has become one of the fastest-growing and most significant areas of sustainable chemistry in the world. Lignin Chemistry: Characterization, Isolation, and Valorization presents a systematic, multidisciplinary overview of this cutting-edge field and its current state of research. Beginning with a robust characterization of lignin, the book addresses the isolation and transformation of lignin, as well as the book inspires with a plethora of applications. The result is a critical resource for researchers and professionals in any area of academic or industry where renewable biomass, in particular lignin, has importance. Lignin Chemistry readers will find: Thermochemical and catalytic strategies for lignin conversion Detailed discussion of the valorization of lignin towards biopolymers, nanoparticles, carbon fibers and materials, and hydrogels An authorial team with immense and varied research experience Lignin Chemistry is ideal for chemical engineers, catalytic chemists, biochemists, material scientists, and analytical chemists in industry.




Lignin-based Materials


Book Description

Providing a neat overview of the current research for the biomaterials science community, this book is a one-stop resource for researchers and practitioners working on lignin-based biomaterials..







Soil Science in Italy


Book Description




Transforming Biocities


Book Description

This edited volume centers around the concept of BioCities, which aim to unify nature and urban spaces in order to reverse the effects of global climate change and inequity. Following this principle, the authors propose multiple approaches for sustainable city growth. The discussed concepts are not only relevant for newly constructed cities, but offer transformative perspectives for existing settlements as well. Placing nature at the forefront of city planning is not an entirely new concept, so the authors build on established ideas like the garden city, green city, eco-city, or smart city. All chapters aim to highlight aspects to develop a city that is a resilient nature-based socio-ecological system. Many of these concepts were formed in an effort to copy the best traits of a forest ecosystem: a home for many different species that build complex communities. Much like many of our forests, urban areas are managed by humans for multifunctional purposes, using living and abiotic components. This viewpoint helps to understand the potential and limitations of sustainable growth. With these chapters, the authors want to inspire planners, ecologists, urban foresters and decision makers of the future.




Modification of Polymer Properties


Book Description

Modification of Polymer Properties provides, for the first time, in one title, the latest information on gradient IPNs and gradient copolymers. The book covers the broad range of polymer modification routes in a fresh, current view representing a timely addition to the technical literature of this important area. Historically, blends, copolymers, or filled polymers have been developed to meet specific properties, or to optimize the cost/properties relationship. Using the gradient structure approach with conventional radical polymerization, it has been shown that it is possible to optimize properties if appropriate gradients in the composition of copolymer chains are obtained. An overview of the gradient structure approach for designing polymers has not appeared in the recent literature and this title covers the different methods used to modify properties, offering the whole range of ways to modify polymers in just one volume and making this an attractive option for a wide audience of practitioners. The approach for each chapter is to explain the fundamental principles of preparation, cover properties modification, describe future research and applications as examples of materials that may be prepared for specific applications, or that are already in use, in present day applications. The book is for readers that have a basic background in polymer science, as well as those interested in the different ways to combine or modify polymer properties. - Provides an integrated view on how to modify polymer properties - Presents the entire panorama of polymer properties modification in one reference, covering the essential information in each topic - Includes the optimization of properties using gradients in polymers composition or structure