Microarray Biochip Technology


Book Description

Technology standards for microarray research (M. Schena, R. W. Davis). Microfluidic technologies and instrumentation for printing DNA microarrays (Don Rose). Novel microarray printing and detection technologies (M. L. Mace Júnior, J. Montagu, Stanley D. Rose, G. McGuinness). A systems approach to fabricating and analyzing DNA microarrayss (J. Worley, K. Bechtol, S. Penn, D. Roach, D. hanzel, M. Trounstine, D. B.). The flow-thru chip: a three-dimensional biochip platform (A. Stell, M. Torres, J. Hartwell, Yong-Yi Yu, Nan Ting, G. Hoke, H. Yang). Large-scale genomic analysis using affymetrix genechip probe arrays (J. A. Warrington, S. Dee, M. Trulson). Technology and applications of gene expression microarrays (E. Evertsz, P. Starink, R. Gupta, D. Watson). Information processing issues and solutions associated with microarray technology (Y.-X. Zhou, P. Kalocsai, J.-Y. Chen, S. Shams). Microarray tools, kits, reagents, and services (T. Martinsky, P. Haje). Micromax: a highly sensitive system for differential gene expression on microarrays (K. Adler, J. Broadbent, R. Garlick, R. Joseph, A. Khimani, A. Mikulskis, P. Rapiejko, J. Killian). Production of microarrays on porous substrates using noncontact piezoelectric dispensing (D. Englert). Arrayed primer extension on the DNA chip: method and applications (N. Tonisson, A. Kurg, E. Lõhmussaar, A. Metspalu). Overview of a microarray scanner: design essentials for an integrated acquisition and analysis platform (T. Basarsky, D. Verdnik, J. Ye Zhai, D. Wellis). Selected supplier list. Index.




Biochip Technology


Book Description

Biochip technology has experienced explosive growth in recent years and Biochip technology describes the basic manufacturing and fabrication processes and the current range of applications of these chips. Top scientists from the biochip industry and related areas explain the diverse applications of biochips in gene sequencing, expression monitoring, disease diagnosis, tumor examination, ligand assay and drug discovery.




Microarray Methods and Protocols


Book Description

A Step-by-Step Guide to Present and Future Uses of Microarray TechnologyMicroarray technology continues to evolve, taking on a variety of forms. From the spotting of cDNA and the in situ synthesis of oligonucleotide arrays now come microarrays comprising proteins, carbohydrates, drugs, tissues, and cells. With contributions from microarray experts




Microarray Analysis


Book Description

This authoritative text begins with an introduction to basic microarray technology. The author then provides clear explanations of the conceptual and theoretical basis of this technology, followed by thorough and multi-disciplinary coverage of modern and emerging applications. The coverageincludes chapters on microarray informatics, gene expression profiling, genetic diagnostics, and novel microarray technologies.




Microarray Technology and Its Applications


Book Description

Ithasbeenstatedthatourknowledgedoublesevery20years,butthatmaybe an understatement when considering the Life Sciences. A series of discoveries and inventions have propelled our knowledge from the recognition that DNA isthegeneticmaterialtoabasicmolecularunderstandingofourselvesandthe living world around us in less than 50 years. Crucial to this rapid progress was thediscoveryofthedouble-helicalstructureofDNA,whichlaidthefoundation forallhybridizationbasedtechnologies. Thediscoveriesofrestrictionenzymes, ligases, polymerases, combined with key innovations in DNA synthesis and sequencing ushered in the era of biotechnologyas a new science with profound sociological and economic implications that are likely to have a dominating in?uence on the development of our society during this century. Given the process by which science builds on prior knowledge, it is perhaps unfair to single out a few inventions and credit them with having contributed most to thisavalancheofknowledge. Yet,therearesurelysomethatwillberecognized as having had a more profound impact than others, not just in the furthering of our scienti?c knowledge, but by leveraging commercial applications that provide a tangible return to our society. The now famous Polymerase Chain Reaction, or PCR, is surely one of those, as it has uniquely catalyzed molecular biology during the past 20 years, and continues to have a signi?cant impact on all areas that involve nucleic acids, ranging from molecular pathology to forensics. Ten years ago micro- ray technology emerged as a new and powerful tool to study nucleic acid - quences in a highly multiplexed manner, and has since found equally exciting and useful applications in the study of proteins, metabolites, toxins, viruses, whole cells and even tissues.




Digital Microfluidic Biochips


Book Description

Digital Microfluidic Biochips focuses on the automated design and production of microfluidic-based biochips for large-scale bioassays and safety-critical applications. Bridging areas of electronic design automation with microfluidic biochip research, the authors present a system-level design automation framework that addresses key issues in the design, analysis, and testing of digital microfluidic biochips. The book describes a new generation of microfluidic biochips with more complex designs that offer dynamic reconfigurability, system scalability, system integration, and defect tolerance. Part I describes a unified design methodology that targets design optimization under resource constraints. Part II investigates cost-effective testing techniques for digital microfluidic biochips that include test resource optimization and fault detection while running normal bioassays. Part III focuses on different reconfiguration-based defect tolerance techniques designed to increase the yield and dependability of digital microfluidic biochips. Expanding upon results from ongoing research on CAD for biochips at Duke University, this book presents new design methodologies that address some of the limitations in current full-custom design techniques. Digital Microfluidic Biochips is an essential resource for achieving the integration of microfluidic components in the next generation of system-on-chip and system-in-package designs.




DNA Arrays


Book Description

Microarray technology provides a highly sensitive and precise te- nique for obtaining information from biological samples, with the added advantage that it can handle a large number of samples simultaneously that may be analyzed rapidly. Researchers are applying microarray technology to understand gene expression, mutation analysis, and the sequencing of genes. Although this technology has been experimental, and thus has been through feasibility studies, it has just recently entered into widespread use for advanced research. The purpose of DNA Arrays: Methods and Protocols is to provide instruction in designing and constructing DNA arrays, as well as hybridizing them with biological samples for analysis. An additional purpose is to p- vide the reader with a broad description of DNA-based array technology and its potential applications. This volume also covers the history of DNA arrays—from their conception to their ready off-the-shelf availability—for readers who are new to array technology as well as those who are well versed in this field. Stepwise, detailed experimental procedures are described for constructing DNA arrays, including the choice of solid support, attachment methods, and the general conditions for hybridization. With microarray technology, ordered arrays of oligonucleotides or other DNA sequences are attached or printed to the solid support using au- mated methods for array synthesis. Probe sequences are selected in such a way that they have the appropriate sequence length, site of mutation, and T .




Frontiers in Biochip Technology


Book Description

Frontiers in Biochip Technology Dr. Wan-Li Xing and Dr. Jing Cheng Frontiers in Biochip Technology serves as an essential collection of new research in the field of biochip technology. This comprehensive collection covers emerging technologies and cutting –edge research in the field of biochip technology, with all chapters written by the international stars of this evolving field. Key topics and current trends in biochip technology covered include: -microarray technology and its applications - microfluidics - drug discovery - detection technology - lab-on-chip technology and bioinformatics. Frontiers in Biochip Technology is an important volume for all biotechnologists, bioengineers, genetic engineers, pharmacological researchers, and general bench researchers who want to be up-to-date on the latest advances in the rapidly growing field of biochip technology. The Editors: Dr. Wan-Li Xing, Tsinghua University School of Medicine, National Engineering Research Center for Beijing Biochip Technology (NERCBBT), and CapitalBio Corporation, Beijing, China Dr. Xing is a Professor at Medical Systems Biology Research Center, Tsinghua University School of Medicine, and also serves as the Executive Deputy Director at NERCBBT, CapitalBio Corporation, a world-leader in biochip research. Dr. Xing has published widely and obtained many patents and applications. Dr. Jing Cheng, Tsinghua University School of Medicine, National Engineering Research Center for Beijing Biochip Technology (NERCBBT), and CapitalBio Corporation, Beijing, China Dr. Jing Cheng is the Cheung Kong Professor at Medical Systems Biology Research Center, Tsinghua University School of Medicine, the Director of NERCBBT and CEO & CTO of CapitalBio. Dr. Cheng developed the world’s first system of laboratory-on-a-chip in 1998; this work was featured in the front-cover story of the June 1998 issue of Nature Biotechnology and cited as the breakthrough of the year by Science in the same year. He has been awarded Nanogen’s most prestigious award Nano Grant, Distinguished Achievement Award for Overseas Chinese Scholars Returned, China’s Science & Technology Award for Outstanding Youth, and Qiushi Technology Transfer Award for Outstanding Youth. Dr. Cheng has published over 90 peer-reviewed papers. In addition, he has obtained over 60 European and U.S. patents and applications.




Molecular Diagnostics: Promises and Possibilities


Book Description

A rapid development in diverse areas of molecular biology and genetic engineering resulted in emergence of variety of tools. These tools are not only applicable to basic researches being carried out world over, but also exploited for precise detection of abnormal conditions in plants, animals and human body. Although a basic researcher is well versed with few techniques used by him/her in the laboratory, they may not be well acquainted with methodologies, which can be used to work out some of their own research problems. The picture is more blurred when the molecular diagnostic tools are to be used by physicians, scientists and technicians working in diagnostic laboratories in hospitals, industry and academic institutions. Since many of them are not trained in basics of these methods, they come across several gray areas in understanding of these tools. The accurate application of molecular diagnostic tools demands in depth understanding of the methodology for precise detection of the abnormal condition of living body. To meet the requirements of a good book on molecular diagnostics of students, physicians, scientists working in agricultural, veterinary, medical and pharmaceutical sciences, it needs to expose the reader lucidly to: Give basic science behind commonly used tools in diagnostics Expose the readers to detailed applications of these tools and Make them aware the availability of such diagnostic tools The book will attract additional audience of pathologists, medical microbiologists, pharmaceutical sciences, agricultural scientists and veterinary doctors if the following topics are incorporated at appropriate places in Unit II or separately as a part of Unit-III in the book. Molecular diagnosis of diseases in agricultural crops Molecular diagnosis of veterinary diseases. Molecular epidemiology, which helps to differentiate various epidemic strains and sources of disease outbreaks. Even in different units of the same hospital, the infections could be by different strains of the same species and the information becomes valuable for infection control strategies. Drug resistance is a growing problem for bacterial, fungal and parasitic microbes and the molecular biology tools can help to detect the drug resistance genes without the cultivation and in vitro sensitivity testing. Molecular diagnostics offers faster help in the selection of the proper antibiotic for the treatment of tuberculosis, which is a major problem of the in the developing world. The conventional culture and drug sensitivity testing of tuberculosis bacilli is laborious and time consuming, whereas molecular diagnosis offers rapid drug resistant gene detection even from direct clinical samples. The same approach for HIV, malaria and many more diseases needs to be considered. Molecular diagnostics in the detection of diseases during foetal life is an upcoming area in the foetal medicine in case of genetic abnormalities and infectious like TORCH complex etc. The book will be equally useful to students, scientists and professionals working in the field of molecular diagnostics.




DNA Microarrays


Book Description

DNA Microarrays: A Practical Approach is the first comprehensive overview of an exciting and powerful new technology. DNA microarrays, or biochips, are small glass chips embedded with ordered rows of DNA, providing a massive parallel platform for data gathering and representing a fundamental technical advance in biomedical research. Such biochips gather data at an unprecedented rate by enabling the use of advanced fabrication, detection, and data mining technologies. Written and edited by experts in the field, this book provides fascinating insight into this remarkable advancement. It opens with an introduction to the technology of DNA microarrays, emphasizing the methodological fundamentals of biochips, and continues with descriptions of the use of confocal scanning in microarray detection and techniques for the efficient cloning and screening of differentially expressed genes. The chapters address many topics, among them assay optimization, antisense scanning arrays, the manufacture of molecular arrays, and gene expression analysis. Also addressed are the uses of expression data in bioinformatics, of active microelectronic arrays for DNA hybridization analysis, and of microarray technology in pharmacogenomics. DNA Microarrays: A Practical Approach is ideal for researchers investigating patterns of gene expression (and the relationship with disease), and it is essential for any researcher interested in the use of biochips.