Microbial Nexus for Sustainable Wastewater Treatment


Book Description

Microbial ecology is pivotal in wastewater treatment, where microorganisms play a vital role in breaking down organic matter and ultimately reduce the levels of contaminants in treated water, making it safe for reuse in agriculture, industry, and other applications. The book, Microbial Nexus for Sustainable Wastewater Treatment: Resources, Efficiency, and Reuse, ventures into the dynamic world of microbial ecosystems, unveiling their pivotal role in reshaping wastewater treatment technologies. This book addresses novel microbial techniques related to sustainable, efficient technologies of wastewater treatment and wastewater reuse as well as obtaining high-quality effluents from treatment plants. Features: Unveils the potential of high-throughput microbial biotechnology for transforming wastewater management. Describes the microbial nexus involved in the biodegradation of pharmaceutical micropollutants. Highlights the valuable materials recoverable from wastewater, associated challenges, and diverse opportunities arising from effective wastewater management. Covers advanced bioremediation technologies designed to handle emerging pollutants. Demonstrates the integration of nanotechnology with bioaugmentation, exploring potential advantages and disadvantages that shape the future of wastewater treatment. Provides insights into adopting a circular economy model aligning with sustainable development goals for resource extraction. This book is tailored for graduate students and researchers in wastewater treatment, waste valorization, environmental engineering, and hazardous waste management.




Microbial Fuel Cells


Book Description

The theory, design, construction, and operation of microbial fuel cells Microbial fuel cells (MFCs), devices in which bacteria create electrical power by oxidizing simple compounds such as glucose or complex organic matter in wastewater, represent a new and promising approach for generating power. Not only do MFCs clean wastewater, but they also convert organics in these wastewaters into usable energy. Given the world's limited supply of fossil fuels and fossil fuels' impact on climate change, MFC technology's ability to create renewable, carbon-neutral energy has generated tremendous interest around the world. This timely book is the first dedicated to MFCs. It not only serves as an introduction to the theory underlying the development and functioning of MFCs, it also serves as a manual for ongoing research. In addition, author Bruce Logan, a leading pioneer in MFC research and development, provides practical guidance for the effective design and operation of MFCs based on his own firsthand experience. This reference covers everything you need to fully understand MFCs, including: * Key topics such as voltage and power generation, MFC materials and architecture, mass transfer to bacteria and biofilms, bioreactor design, and fundamentals of electron transfer * Applications across a wide variety of scales, from power generation in the laboratory to approaches for using MFCs for wastewater treatment * The role of MFCs in the climate change debate * Detailed illustrations of bacterial and electrochemical concepts * Charts, graphs, and tables summarizing key design and operation variables * Practice problems and step-by-step examples Microbial Fuel Cells, with its easy-to-follow explanations, is recommended as both a textbook for students and professionals interested in entering the field and as a complete reference for more experienced practitioners.




Sustainable Technologies for Water and Wastewater Treatment


Book Description

Sustainable Technologies for Water and Wastewater Treatment discusses relevant sustainable technologies for water and wastewater treatment pertaining to a nanoscale approach to water treatment and desalination, membrane-based technologies for water recovery and reuse, the energy and water nexus, degradation of organic pollutants, nascent technologies, bio and bio-inspired materials for water reclamation and integrated systems, and an overview of wastewater treatment plants. The book focuses on advanced topics including in situ generation of hydroxyl radicals, which can aid in the indiscriminate oxidation of any contaminant present in wastewater, making advanced oxidation processes commercially viable. Features: A comprehensive review of current and novel water and wastewater treatment technologies from a sustainability perspective All the sustainable technologies, such as desalination, wastewater treatment, advanced oxidation processes, hydrodynamic cavitation, membrane-based technologies, sonosorption, and electrospun fibers Discussion on reference materials for important research accomplishments in the area of water and environmental engineering Theoretical aspects covering principles and instrumentation A summary on sustainability, including life cycle assessment (LCA), energy balance and large-scale implementation of advanced techniques This book is aimed at professionals, graduate students, and researchers in civil, chemical, environmental engineering, and materials science.




Phytoremediation Potential of Perennial Grasses


Book Description

Phytoremediation Potential of Perennial Grasses provides readers with the knowledge to select specific perennial grass species according to site-specific needs. In addition, it demonstrates the potential opportunities for grass-based phytoremediation to yield phytoproducts, especially biomass-based bioenergy and aromatic essential oils as a green economy while in the process of remediating contaminated sites. The book brings together recent and established knowledge on different aspects of grass-based phytoremediation, providing this information in a single source that offers a cutting-edge synthesis of scientific and experiential knowledge on polluted site restoration that is useful for both practitioners and scientists in environmental science and ecology. - Provides a holistic approach to grass-based phytoremediation, covering the ecological, economic and social issues related to its management - Addresses the key role that grass-based phytoremediation plays in maintaining ecosystem services in polluted sites - Includes strategies to mitigate costs related to the phytoremediation of polluted sites




Nature Based Solutions for Wastewater Treatment


Book Description

There are 2.4 billion people without improved sanitation and another 2.1 billion with inadequate sanitation (i.e. wastewater drains directly into surface waters), and despite improvements over the past decades, the unsafe management of fecal waste and wastewater continues to present a major risk to public health and the environment (UN, 2016). There is growing interest in low cost sanitation solutions which harness natural systems. However, it can be difficult for wastewater utility managers to understand under what conditions such nature-based solutions (NBS) might be applicable and how best to combine traditional infrastructure, for example an activated sludge treatment plant, with an NBS such as treatment wetlands. There is increasing scientific evidence that treatment systems with designs inspired by nature are highly efficient treatment technologies. The cost-effective design and implementation of ecosystems in wastewater treatment is something that exists and has the potential to be further promoted globally as both a sustainable and practical solution. This book serves as a compilation of technical references, case examples and guidance for applying nature-based solutions for treatment of domestic wastewater, and enables a wide variety of stakeholders to understand the design parameters, removal efficiencies, costs, co-benefits for both people and nature and trade-offs for consideration in their local context. Examples through case studies are from across the globe and provide practical insights into the variety of potentially applicable solutions.




Clean Energy and Resource Recovery


Book Description

Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries




Environmental Nexus for Resource Management


Book Description

This book gives detailed information about how soil, water and wastes can be managed to overcome the various global issues via possible nexus thinking. The emphasis is on the environmental resource perspective of global climate change-related issues. It provides stepwise information on climate change and adaption strategies, urbanization and its impact and management strategies, environmental nexus approaches to cope with global challenges and recourses conservation and ecological approaches to restore the damaged ecosystem. Features: Compiles the possible nexus approaches that contribute to managing the atmospheric environmental variables in sustainable ways Focuses on environmental resources perspective of the global change Covers how soil, water and waste may be managed in a nexus Explains modern strategies to manage the present environmental situation that are feasible and safe to the environment Discusses environmental nexus for judicious resource management This book is aimed at researchers and graduate students in environmental sciences and engineering and sustainable development.




Sustainable Management and Utilization of Sewage Sludge


Book Description

This book is devoted to sewage sludge, its sustainable management, and its use and implications on soil fertility and crop production. The book traces the main chemical and biological properties of sewage sludge, and covers topics such as sewage sludge biostabilization and detoxification, biological and thermochemical treatment technologies, emerging nutrient recovery technologies, the role of microorganisms in sewage sludge management, and the sustainable use of sewage sludge as fertilizer in agriculture. The book offers a valuable asset for researchers, scholars and policymakers alike.




Microbial Electrochemical Technologies


Book Description

This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.