Microbial Transport Systems


Book Description

Transport of molecules across the cell membrane is a fundamental process of all living organisms. It is essential for understanding growth, development, nutrition as well as uptake and excretion of exogenous or synthesized molecules. Microbes respresent general and basic functional systems where many transport processes have been studied on a molecular basis. Knowledge of the microbial transport processes will provide new perspectives to treatments by inhibitors, drugs, antibiotics, vitamins, growth promotion compounds, activators and toxic compunds of various kinds.




Bacterial Physiology and Metabolism


Book Description

Recent determination of genome sequences for a wide range of bacteria has made in-depth knowledge of prokaryotic metabolic function essential in order to give biochemical, physiological, and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology, and human health. Prokaryotic structure is described as well as the means by which nutrients are transported into cells across membranes. Glucose metabolism through glycolysis and the TCA cycle are discussed, as well as other trophic variations found in prokaryotes, including the use of organic compounds, anaerobic fermentation, anaerobic respiratory processes, and photosynthesis. The regulation of metabolism through control of gene expression and control of the activity of enzymes is also covered, as well as survival mechanisms used under starvation conditions.




Prokaryotic Metabolism and Physiology


Book Description

Extensive and up-to-date review of key metabolic processes in bacteria and archaea and how metabolism is regulated under various conditions.




The Enzymes of Biological Membranes


Book Description

Much of the information currently available on the transport systems of bacterial and animal cell membranes and their mode of coupling to metabolic supply of energy can be found in this volume. Consideration of the participating enzymes dictated the choice of topics: Several transport systems where little information is available on the enzymology of the process are not included, while separate chapters deal with y-glutamyl transpeptidase and intestinal disaccharidases which meet many of the requirements of transport enzymes. The volume also includes two chapters on photosynthetic membranes as a general introduction to the topic. Other aspects of biological transport and photosynthesis will be developed in detail in a forthcoming volume now in preparation. These chapters reveal the excitement and rapid advance of the field, the daily reports of new concepts, new techniques, and new experimental findings which instantly interact to generate further progress. Our aim was to provide a starting point for those who are just beginning, and an opportunity for others to stop, take stock, and start in a new direction. My warmest thanks to all who contributed to this volume.




Mechanisms and Regulation of Carbohydrate Transport in Bacteria


Book Description

Mechanisms and Regulation of Carbohydrate Transport in Bacteria reviews the developments in the study of the mechanisms and regulation of carbohydrate transport in prokaryotic organisms. The book presents the progress made in the understanding of transport and regulation of carbohydrates in bacteria in the molecular level. Aspects on the important structural and topographical features of several sugar permeases in Escherichia coli are elucidated; the energy-coupling processes are clearly delineated for most (but not all) types of bacterial carbohydrate permease systems; and mechanistic details ...




Bacterial Energetics


Book Description

Bacterial Energetics deals with bacterial energetics and the molecular basis of how ions move between and within energy-transducing molecules. Topics covered range from respiration-driven proton pumps and primary sodium pumps to light-driven primary ionic pumps, bacterial transport ATPases, and bacterial photosynthesis. Sodium-coupled cotransport and ion-exchange systems in prokaryotes are also considered. This volume is comprised of 17 chapters and begins with an analysis of the pumps and processes that establish electrochemical ion gradients across bacterial membranes, followed by a discussion on the major types of bioenergetic work that utilize these gradients. The energetics of periplasmic transport systems, chemolithotrophs, methanogens, and protein insertion and translocation into or across membranes are also examined, along with bioenergetics in extreme environments such as high-pressure and high-temperature environments; energetic problems of bacterial fermentations; energetics of bacterial motility; and energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. This book should be of interest to molecular biologists and biochemists.




Protein Secretion in Bacteria


Book Description

Protein transport into and across membranes is a fundamental process in bacteria that touches upon and unites many areas of microbiology, including bacterial cell physiology, adhesion and motility, nutrient scavenging, intrabacterial signaling and social behavior, toxin deployment, interbacterial antagonism and collaboration, host invasion and disruption, and immune evasion. A broad repertoire of mechanisms and macromolecular machines are required to deliver protein substrates across bacterial cell membranes for intended effects. Some machines are common to most, if not all bacteria, whereas others are specific to Gram-negative or Gram-positive species or species with unique cell envelope properties such as members of Actinobacteria and Spirochetes. Protein Secretion in Bacteria, authored and edited by an international team of experts, draws together the many distinct functions and mechanisms involved in protein translocation in one concise tome. This comprehensive book presents updated information on all aspects of bacterial protein secretion encompassing: Individual secretory systems–Sec, Tat, and T1SS through the newly discovered T9SS Mechanisms, structures, and functions of bacterial secretion systems Lipoprotein sorting pathways, outer membrane vesicles, and the sortase system Structures and roles of surface organelles, including flagella, pili, and curli Emerging technologies and translational implications Protein Secretion in Bacteria serves as both an introductory guide for students and postdocs and a ready reference for seasoned researchers whose work touches on protein export and secretion. This volume synthesizes the diversity of mechanisms of bacterial secretion across the microbial world into a digestible resource to stimulate new research, inspire continued identification and characterization of novel systems, and bring about new ways to manipulate these systems for biotechnological, preventative, and therapeutic applications.




Modeling of Microscale Transport in Biological Processes


Book Description

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.




Microbial Interactions


Book Description

Microbiology has undergone a number of metamorphoses in its relatively brief existence. It has been in approximate succession, morphology, epidemiology, biochemistry, genetics, and molecular biology. It is also becoming a significant parcel of cell surface studies. The one embodiment which has remained elusiv- particularly for bacteriology - is the taxonomic one. This may have been a blessing in disguise because it encouraged microbiologists to deal with the general rather than the particular; promoting a search for unitary explanations, in the manner of Kluyver and van Niel, long before anyone knew about the universality of the genetic code, or could trace the genealogy of enzymes from the study of amino acid substitutions. . This volume is predicated on the idea that deep analogies underly the mech anisms of cellular interaction, and therefore belongs in the unitary tradition of microbiology. It occupies itself with a wide variety of micro-organisms, considering them from vantage points of considerable diversity, ranging from taxonomic irreverence to keen evolutionary awareness, and is concerned with areas which have developed independently of each other.




Microbial Transport Systems


Book Description

Transport of molecules across the cell membrane is a fundamental process of all living organisms. It is essential for understanding growth, development, nutrition as well as uptake and excretion of exogenous or synthesized molecules. Microbes respresent general and basic functional systems where many transport processes have been studied on a molecular basis. Knowledge of the microbial transport processes will provide new perspectives to treatments by inhibitors, drugs, antibiotics, vitamins, growth promotion compounds, activators and toxic compunds of various kinds.