Microchip Capillary Electrophoresis


Book Description

Leading chemists and engineers concisely explain the principles behind microchip capillary electrophoresis and demonstrate its use in a variety of biochemical applications, ranging from the analysis of DNA, proteins, and peptides to single cell analysis and measuring the impact of surface modification on flow in microfluidic channels. Since surface chemistry must be carefully considered for optimal operation at this scale, the authors also discuss methods of both adsorbed and covalent surface modification for its control. Fabrication methods for producing microchips with glass, poly(dimethylsiloxane), and other polymers are also provided so that even novices can produce simple devices for standard separations. Microchip Capillary Electrophoresis: Methods and Protocols provides a practical starting point for either initiating research in the field of microchip capillary electrophoresis or understanding the full range of what can be done with existing systems.




Microchip Capillary Electrophoresis Protocols


Book Description

Annotation In this volume expert researchers in the field detail the operations of microchip capillary electrophoresis. Chapters focus on small molecule, biomolecule applications, various detection modes, and sample preparation approaches are described. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.Authoritative and practical, Microchip Capillary Electrophoresis Protocol aids scientists in continuing to study microchip capillary electrophoresis.




Microchip Capillary Electrophoresis


Book Description

Leading chemists and engineers concisely explain the principles behind microchip capillary electrophoresis and demonstrate its use in a variety of biochemical applications, ranging from the analysis of DNA, proteins, and peptides to single cell analysis and measuring the impact of surface modification on flow in microfluidic channels. Since surface chemistry must be carefully considered for optimal operation at this scale, the authors also discuss methods of both adsorbed and covalent surface modification for its control. Fabrication methods for producing microchips with glass, poly(dimethylsiloxane), and other polymers are also provided so that even novices can produce simple devices for standard separations. Microchip Capillary Electrophoresis: Methods and Protocols provides a practical starting point for either initiating research in the field of microchip capillary electrophoresis or understanding the full range of what can be done with existing systems.




Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques


Book Description

Now in its third edition, this bestselling work continues to offer state-of-the-art information on the development and employment of capillary electrophoresis. With special emphasis on microseparations and microfluidics, it features new chapters describing the use of microchip electrophoresis and associated microtechniques, with a focus on the extraordinary breadth of work undertaken to expand CE methodologies in recent years. Enhanced by contributions from leading international experts, the Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, Third Edition remains a seminal reference for the chemistry, biology, and engineering fields.




Microchip Capillary Electrophoresis Protocols


Book Description

In this volume expert researchers in the field detail the operations of microchip capillary electrophoresis. Chapters focus on small molecule, biomolecule applications, various detection modes, and sample preparation approaches are described. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microchip Capillary Electrophoresis Protocol aids scientists in continuing to study microchip capillary electrophoresis.




Capillary Electrophoresis and Microchip Capillary Electrophoresis


Book Description

Explores the benefits and limitations of the latest capillary electrophoresis techniques Capillary electrophoresis and microchip capillary electrophoresis are powerful analytical tools that are particularly suited for separating and analyzing biomolecules. In comparison with traditional analytical techniques, capillary electrophoresis and microchip capillary electrophoresis offer the benefits of speed, small sample and solvent consumption, low cost, and the possibility of miniaturization. With contributions from a team of leading analytical scientists, Capillary Electrophoresis and Microchip Capillary Electrophoresis explains how researchers can take full advantage of all the latest techniques, emphasizing applications in which capillary electrophoresis has proven superiority over other analytical approaches. The authors not only explore the benefits of each technique, but also the limitations, enabling readers to choose the most appropriate technique to analyze a particular sample. The book's twenty-one chapters explore fundamental aspects of electrophoretically driven separations, instrumentation, sampling techniques, separation modes, detection systems, optimization strategies for method development, and applications. Specific topics include: Critical evaluation of the use of surfactants in capillary electrophoresis Sampling and quantitative analysis in capillary electrophoresis Capillary electrophoresis with electrochemical detection Overcoming challenges in using microchip electrophoresis for extended monitoring applications Capillary electrophoresis of intact unfractionated heparin and related impurities Microchip capillary electrophoresis for in situ planetary exploration Each chapter begins with an introduction and ends with conclusions as well as references to the primary literature. Novices to the field will find this book an easy-to-follow introduction to core capillary electrophoresis techniques and methods. More experienced investigators can turn to the book for troubleshooting tips and expert advice to guide them through the most advanced applications.




Microfluidics


Book Description

What Is Microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale at which surface forces dominate volumetric forces. It is a multidisciplinary field that involves engineering, physics, chemistry, biochemistry, nanotechnology, and biotechnology. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening. Microfluidics emerged in the beginning of the 1980s and is used in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Microfluidics Chapter 2: Droplet-based microfluidics Chapter 3: Digital microfluidics Chapter 4: Paper-based microfluidics Chapter 5: Microfluidic cell culture Chapter 6: Electroosmotic pump Chapter 7: Materials science (II) Answering the public top questions about microfluidics. (III) Real world examples for the usage of microfluidics in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of microfluidics' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of microfluidics.




Capillary Electromigration Separation Methods


Book Description

Capillary Electromigration Separation Methods is a thorough, encompassing reference that not only defines the concept of contemporary practice, but also demonstrates its implementation in laboratory science. Chapters are authored by recognized experts in the field, ensuring that the content reflects the latest developments in research. Thorough, comprehensive coverage makes this the ideal reference for project planning, and extensive selected referencing facilitates identification of key information. The book defines the concept of contemporary practice in capillary electromigration separation methods, also discussing its applications in small mass ions, stereoisomers, and proteins. - Edited and authored by world-leading capillary electrophoresis experts - Presents comprehensive coverage on the subject - Includes extensive referencing that facilitates the identification of key research developments - Provides more than 50 figures and tables that aid in the retention of key concepts




Clinical Applications of PCR


Book Description

In this updated second edition, leading researchers apply molecular diagnostics to the many recent advances that have occurred in polymerase chain reaction( PCR)-based technologies. Highlights include real-time PCR, which allows the technique to be performed in a quantitative manner with improved sensitivity, robustness, and resilience to carryover contamination, mass spectrometric analysis of nucleic acids, and circulating cell-free nucleic acids in plasma. The authors apply these innovations to a broad spectrum of applications, including gene expression, methylation, trace molecule, gene dosage, and single cell analysis.




New and Emerging Proteomic Techniques


Book Description

Leading researchers and innovators describe in step-by-step detail the latest techniques that promise to significantly impact the practice of proteomics, as well as its success in developing novel clinical agents. The methods span the entire spectrum of top-down and bottom-up approaches, including microarrays, gels, chromatography, and affinity separations, and address every aspect of the human proteome, both quantitatively and qualitatively. The techniques of protein detection utilized are diverse and range from fluorescence and resonance light scattering to surface plasmon resonance and mass spectrometry. The protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.




Recent Books