Microlocal Analysis and Nonlinear Waves


Book Description

This IMA Volume in Mathematics and its Applications MICROLOCAL ANALYSIS AND NONLINEAR WAVES is based on the proceedings of a workshop which was an integral part of the 1988- 1989 IMA program on "Nonlinear Waves". We thank Michael Beals, Richard Melrose and Jeffrey Rauch for organizing the meeting and editing this proceedings volume. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE Microlocal analysis is natural and very successful in the study of the propagation of linear hyperbolic waves. For example consider the initial value problem Pu = f E e'(RHd), supp f C {t ;::: O} u = 0 for t




Microlocal Analysis and Nonlinear Waves


Book Description

This IMA Volume in Mathematics and its Applications MICROLOCAL ANALYSIS AND NONLINEAR WAVES is based on the proceedings of a workshop which was an integral part of the 1988- 1989 IMA program on "Nonlinear Waves". We thank Michael Beals, Richard Melrose and Jeffrey Rauch for organizing the meeting and editing this proceedings volume. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE Microlocal analysis is natural and very successful in the study of the propagation of linear hyperbolic waves. For example consider the initial value problem Pu = f E e'(RHd), supp f C {t ;::: O} u = 0 for t




Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems


Book Description

This book developed from a series of lectures I gave at the Symposium on Nonlinear Microlocal Analysis held at Nanjing University in October. 1988. Its purpose is to give an overview of the use of microlocal analysis and commutators in the study of solutions to nonlinear wave equations. The weak singularities in the solutions to such equations behave up to a certain extent like those present in the linear case: they propagate along the null bicharacteristics of the operator. On the other hand. examples exhibiting singularities not present in the linear case can also be constructed. I have tried to present a crossection of both the regularity results and the singular examples. for problems on the interior of a domain and on domains with boundary. The main emphasis is on the case of more than one space dimen sion. since that case is treated in great detail in the paper of Rauch-Reed 159]. The results presented here have for the most part appeared elsewhere. and are the work of many authors. but a few new examples and proofs are given. I have attempted to indicate the essential ideas behind the arguments. so that only some of the results are proved in full detail. It is hoped that the central notions of the more technical proofs appearing in research papers will be illuminated by these simpler cases.




Microlocal Analysis for Differential Operators


Book Description

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.




Asymptotic Analysis in General Relativity


Book Description

Introduction to modern methods for classical and quantum fields in general relativity / Thierry Daudé, Dietrich Häfner, and Jean-Philippe Nicolas -- Geometry of black hole spacetimes / Lars Andersson, Thomas B. Ackdahl, and Pieter Blue -- An introduction to Quantum Field Theory on curved space-times / Christian Gerard -- A minicourse on microlocal analysis for wave propagation / Andras Vasy -- An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity / Sean N. Curry and A. Rod Gover




Geometric Asymptotics


Book Description

Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.




Semiclassical Analysis


Book Description

"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.




Mathematics in Industrial Problems


Book Description

This is the third volume in the series "Mathematics in Industrial Prob lems." The motivation for these volumes is to foster interaction between Industry and Mathematics at the "grass roots"; that is, at the level of spe cific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufac ture of new or improved products. At the same time, these problems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA seminar on Industrial Problems. The book is based on questions raised in the seminar and subsequent discussions. Each chapter is devoted to one of the talks and is self-contained. The chap ters usually provide references to the mathematical literature and a list of open problems which are of interest to the industrial scientists. For some problems partial solution is indicated briefly. The last chapter of the book contains a short description of solutions to some of the problems raised in the second volume, as well as references to papers in which such solutions have been published.




Nonlinear Waves


Book Description

Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.




Nonlinear Wave Equations


Book Description

This work examines the mathematical aspects of nonlinear wave propagation, emphasizing nonlinear hyperbolic problems. It introduces the tools that are most effective for exploring the problems of local and global existence, singularity formation, and large-time behaviour of solutions, and for the study of perturbation methods.