Micromechanisms of Fracture and Fatigue


Book Description

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.




The Theory of Critical Distances


Book Description

Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods – until now. So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest. The Theory of Critical Distances begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author's own consultancy work. The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis. - Comprehensive collection of published data, plus new data from the author's own laboratories - A simple 'how-to-do-it' exposition of the method, plus examples and case studies - Detailed theoretical treatment - Covers all classes of materials: metals, polymers, ceramics and composites - Includes fracture, fatigue, fretting, size effects and multiaxial loading




Fatigue of Materials


Book Description

Written by a leading researcher in the field, this revised and updated second edition of a highly successful book provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, non-metals and composites. The author discusses the principles of cyclic deformation, crack initiation and crack growth by fatigue, covering both microscopic and continuum aspects. The book begins with discussions of cyclic deformation and fatigue crack initiation in monocrystalline and polycrystalline ductile alloys as well as in brittle and semi-/non-crystalline solids. Total life and damage-tolerant approaches are then introduced in metals, non-metals and composites followed by more advanced topics. The book includes an extensive bibliography and a problem set for each chapter, together with worked-out example problems and case studies. This will be an important reference for anyone studying fracture and fatigue in materials science and engineering, mechanical, civil, nuclear and aerospace engineering, and biomechanics.




Fracture Behaviour of Polymers


Book Description

Over recent years there has been a tremendous upsurge in interest in the fracture behaviour of polymers. One reason for this is the increas ing use of polymers in structural engineering applications, since in such circumstances it is essential to have as complete an understanding as possible of the polymer's fracture behaviour. This book is designed to meet the requirements of those who need to be informed of the latest developments in the field of polymer fracture. It is written particularly for research workers but it should also prove invaluable for advanced students taking final-year undergraduate or postgraduate courses. The main emphasis is upon the use of fracture mechanics in the study of polymer fracture but this approach is then developed to cover the micromechanisms of the fracture process. Particular prominence is given to the relationship between structure, mechanical properties and the mechanics and mechanisms of fracture. The first chapter is a brief introduction which has several aims. One is to introduce polymers to the reader who does not have a strong background in the subject and another is to provide background material that will be used at later stages. The book is then split into two main parts: the first deals with the mechanics and mechanisms whilst the second is concerned with materials. In Part I phenomena such as molecular fracture, fracture mechanics, shear yielding and crazing are covered from a general viewpoint.




Fracture, Fatigue and Structural Integrity of Metallic Materials


Book Description

Fracture, fatigue, and other subcritical processes, such as creep crack growth or stress corrosion cracking, present numerous open issues from both scientific and industrial points of view. These phenomena are of special interest in industrial and civil metallic structures, such as pipes, vessels, machinery, aircrafts, ship hulls, and bridges, given that their failure may imply catastrophic consequences for human life, the natural environment, and/or the economy. Moreover, an adequate management of their operational life, defining suitable inspection periods, repairs, or replacements, requires their safety or unsafety conditions to be defined. The analysis of these technological challenges requires accurate comprehensive assessment tools based on solid theoretical foundations as well as structural integrity assessment standards or procedures incorporating such tools into industrial practice.




Fundamentals of Fracture Mechanics


Book Description




Micromechanics of Defects in Solids


Book Description

This book stems from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micromechanics was a rather unfamiliar subject. Although I repeated the course every year, I was never convinced that my notes have quite developed into a final manuscript because new topics emerged constantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Japanese, entitled Micromechanics, published by Baifu-kan, Tokyo, in 1975. It received an extremely favorable response from students and re searchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materi als: plasticity, fracture and fatigue, constitutive equations, composite materi als, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.




Fatigue Crack Growth in Rubber Materials


Book Description

The book summarizes recent international research and experimental developments regarding fatigue crack growth investigations of rubber materials. It shows the progress in fundamental as well as advanced research of fracture investigation of rubber material under fatigue loading conditions, especially from the experimental point of view. However, some chapters will describe the progress in numerical modeling and physical description of fracture mechanics and cavitation phenomena in rubbers. Initiation and propagation of cracks in rubber materials are dominant phenomena which determine the lifetime of these soft rubber materials and, as a consequence, the lifetime of the corresponding final rubber parts in various fields of application. Recently, these phenomena became of great scientific interest due to the development of new experimental methods, concepts and models. Furthermore, crack phenomena have an extraordinary impact on rubber wear and abrasion of automotive tires; and understanding of crack initiation and growth in rubbers will help to support the growthing number of activities and worldwide efforts of reduction of tire wear losses and abrasion based emissions.




Fracture at High Temperatures


Book Description




Small Fatigue Cracks


Book Description

This book contains the fully peer-reviewed papers presented at the Third Engineering Foundation Conference on Small Fatigue Cracks, held under the chairmanship of K.S. Ravichandran and Y. Murakami during December 6-11, 1998, at the Turtle Bay Hilton, Oahu, Hawaii. This book presents a state-of-the-art description of the mechanics, mechanisms and applications of small fatigue cracks by most of the world's leading experts in this field. Topics ranging from the mechanisms of crack initiation, small crack behavior in metallic, intermetallic, ceramic and composite materials, experimental measurement, mechanistic and theoretical models, to the role of small cracks in fretting fatigue and the application of small crack results to the aging aircraft and high-cycle fatigue problems, are covered.