Microwave and Wireless Measurement Techniques


Book Description

Provides practical information on microwave and wireless metrology, from typical metrology parameters to building your own measurement benches.




Microwave and Wireless Measurement Techniques


Book Description

From typical metrology parameters for common wireless and microwave components to the implementation of measurement benches, this introduction to metrology contains all the key information on the subject. Using it, readers will be able to: • Interpret and measure most of the parameters described in a microwave component's datasheet • Understand the practical limitations and theoretical principles of instrument operation • Combine several instruments into measurement benches for measuring microwave and wireless quantities. Several practical examples are included, demonstrating how to measure intermodulation distortion, error vector magnitude, S-parameters and large signal waveforms. Each chapter then ends with a set of exercises, allowing readers to test their understanding of the material covered and making the book equally suited for course use and for self-study.




Modern RF and Microwave Measurement Techniques


Book Description

A comprehensive, hands-on review of the most up-to-date techniques in RF and microwave measurement, including practical advice on deployment challenges.




Planar Microwave Engineering


Book Description

Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.




Handbook of Microwave Component Measurements


Book Description

Handbook of Microwave Component Measurements Second Edition is a fully updated, complete reference to this topic, focusing on the modern measurement tools, such as a Vector Network Analyzer (VNA), gathering in one place all the concepts, formulas, and best practices of measurement science. It includes basic concepts in each chapter as well as appendices which provide all the detail needed to understand the science behind microwave measurements. The book offers an insight into the best practices for ascertaining the true nature of the device-under-test (DUT), optimizing the time to setup and measure, and to the greatest extent possible, remove the effects of the measuring equipment from that result. Furthermore, the author writes with a simplicity that is easily accessible to the student or new engineer, yet is thorough enough to provide details of measurement science for even the most advanced applications and researchers. This welcome new edition brings forward the most modern techniques used in industry today, and recognizes that more new techniques have developed since the first edition published in 2012. Whilst still focusing on the VNA, these techniques are also compatible with other vendor's advanced equipment, providing a comprehensive industry reference.




The Six-port Technique with Microwave and Wireless Applications


Book Description

One of the main issues in microwave and wireless system design is to ensure high performance with low cost techniques. The six-port technique helps allow for this in critical network design areas. This practical resource offers you a thorough overview the six-port technique, from basic principles of RF measurement based techniques and multiport design, to coverage of key applications, such as vector network analyzers, software defined radio, and radar. The first book dedicated to six-port applications and principles, this volume serves as a current, one-stop guide offering you cost-effective solutions for your challenging projects in the field.




An Introduction to Microwave Measurements


Book Description

Go Beyond Basic Distributed Circuit AnalysisAn Introduction to Microwave Measurements has been written in a way that is different from many textbooks. As an instructor teaching a master's-level course on microwave measurements, the author recognized that few of today's graduate electrical engineering students are knowledgeable about microwave measu




RF and Microwave Engineering


Book Description

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.




Microwave and Wireless Synthesizers


Book Description

The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students.




High Frequency Techniques


Book Description

This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods. Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer. Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation) Brief history of wireless (radio) and the Morse code U.S. Radio Frequency Allocations Introduction to vectors AC analysis and why complex numbers and impedance are used Circuit and antenna reciprocity Decibel measure Maximum power transfer Skin effect Computer simulation and optimization of networks LC matching of one impedance to another Coupled Resonators Uniform transmission lines for propagation VSWR, return Loss and mismatch error The Telegrapher Equations (derived) Phase and Group Velocities The Impedance Transformation Equation for lines (derived) Fano's and Bode's matching limits The Smith Chart (derived) Slotted Line impedance measurement Constant Q circles on the Smith Chart Approximating a transmission line with lumped L's and C's ABCD, Z, Y and Scattering matrix analysis methods for circuits Statistical Design and Yield Analysis of products Electromagnetic Fields Gauss's Law Vector Dot Product, Divergence and Curl Static Potential and Gradient Ampere's Law and Vector Curl Maxwell's Equations and their visualization The Laplacian Rectangular, cylindrical and spherical coordinates Skin Effect The Wave Equation The Helmholtz Equations Plane Propagating Waves Rayleigh Fading Circular (elliptic) Polarization Poynting's Theorem EM fields on Transmission Lines Calculating the impedance of coaxial lines Calculating and visualizing the fields in waveguides Propagation constants and waveguide modes The Taylor Series Expansion Fourier Series and Green's Functions Higher order modes and how to suppress them Vector Potential and Retarded Potentials Wire and aperture antennas Radio propagation and path loss Electromagnetic computer simulation of structures Directional couplers The Rat Race Hybrid Even and Odd Mode Analysis applied to the backward wave coupler Network analyzer impedance and transmission measurements Two-port Scattering Parameters (s matrix) The Hybrid Ring coupler The Wilkinson power divider Filter design: Butterworth, Maximally flat & Tchebyscheff responses Filter Q Diplexer, Bandpass and Elliptic filters Richard's Transformation & Kuroda’s Identities Mumford's transmission line stub filters Transistor Amplifier Design: gain, biasing, stability, and conjugate matching Noise in systems, noise figure of an amplifier cascade Amplifier non-linearity, and spurious free dynamic range Statistical Design and Yield Analysis