Minimization Methods for Non-Differentiable Functions


Book Description

In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al,ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods.




Number Theory


Book Description




Nondifferentiable Optimization and Polynomial Problems


Book Description

Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P.




Nondifferentiable Optimization


Book Description




Modern Nonconvex Nondifferentiable Optimization


Book Description

"This monograph serves present and future needs where nonconvexity and nondifferentiability are inevitably present in the faithful modeling of real-world applications of optimization"--




Numerical Optimization


Book Description

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




Nondifferentiable Optimization


Book Description

Of recent coinage, the term "nondifferentiable optimization" (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168].




Nonsmooth Optimization: Analysis And Algorithms With Applications To Optimal Control


Book Description

This book is a self-contained elementary study for nonsmooth analysis and optimization, and their use in solution of nonsmooth optimal control problems. The first part of the book is concerned with nonsmooth differential calculus containing necessary tools for nonsmooth optimization. The second part is devoted to the methods of nonsmooth optimization and their development. A proximal bundle method for nonsmooth nonconvex optimization subject to nonsmooth constraints is constructed. In the last part nonsmooth optimization is applied to problems arising from optimal control of systems covered by partial differential equations. Several practical problems, like process control and optimal shape design problems are considered.




System Modelling and Optimization


Book Description

This conference, organized jointly by UTC and INRIA, is the biennial general conference of the IFIP Technical Committee 7 (System Modelling and Optimization), and reflects the activity of its members and working groups. These proceedings contain a collection of papers (82 from the more than 400 submitted) as well as the plenary lectures presented at the conference.




Recent Books