Miscellaneous works, 1707-50:Arithmetica absque algebra aut Euclide demonstrata. Miscellanea mathematica. Description of the Cave of Dunmore. Revelation of life and immortality. Passive obedience. Essays in the Guardian. Two sermons at Leghorn in 1714. Journal in Italy in 1717-1718. An essay towards preventing the ruin of Great Britain. A proposal ... for converting the savage Americans to Christianity by a college to be erected in the isles of Bermuda. Verses on the prospect of planting arts and learning in America. Notes of sermons ... at Newport, R. I., 1729-31. A sermon preached before the Incorporated society for the propagation of the Gospel in foreign parts ... 1732. The Querist. A discourse addressed to magistrates ... Primary visitation charge ... Address on confirmation. A letter ... on the differences between the Roman and Anglican churches. Two letters on the ... rebellion in 1745. A word to the wise. Maxims concerning patriotism. Appendix: The first edition of the 'Querist.'


Book Description




The Mathematica GuideBook for Symbolics


Book Description

Provides reader with working knowledge of Mathematica and key aspects of Mathematica symbolic capabilities, the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www/MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations










Vedic Mathematics, 'Vedic' or 'Mathematics': A Fuzzy & Neutrosophic Analysis


Book Description

The ?Vedas? are considered ?divine? in origin and are assumed to be revelations from God. In traditional Hinduism, the Vedas were to be learnt only by the ?upper? caste Hindus. The ?lower castes? (Sudras) and so-called ?untouchables? (who were outside the Hindu social order) were forbidden from even hearing to its recitation. In recent years, there have been claims that the Vedas contain the cure to AIDS and the production of electricity.Here the authors probe into Vedic Mathematics (that gained renown during the revivalist Hindutva rule in India and was introduced into school syllabus in several states); and explore if it is really ?Vedic? in origin or ?Mathematics? in content. To gain a better understanding of its imposition, we interviewed students, teachers, parents, educationists and activists. We analyze this problem using models like Fuzzy Cognitive Maps (FCM), Fuzzy Relational Maps (FRM) and newly constructed Fuzzy Dynamical System (and their Neutrosophic Analogues). The issue of imposition of Vedic Mathematics into the school curriculum involves religious politics, caste supremacy, apart from elementary arithmetic ? so we use fuzzy and neutrosophic techniques to gain acute insight into how students have been affected because of this politically motivated syllabus revision.







Series and Products in the Development of Mathematics


Book Description

First of two volumes tracing the development of series and products. Second edition adds extensive material from original works.




Mathematical Analysis during the 20th Century


Book Description

For several centuries, analysis has been one of the most prestigious and important subjects in mathematics. The present book sets off by tracing the evolution of mathematical analysis, and then endeavours to understand the developments of main trends, problems, and conjectures. It features chapters on general topology, 'classical' integration and measure theory, functional analysis, harmonic analysis and Lie groups, theory of functions and analytic geometry, differential and partial differential equations, topological and differential geometry. The ubiquitous presence of analysis also requires the consideration of related topics such as probability theory or algebraic geometry. Each chapter features a comprehensive first part on developments during the period 1900-1950, and then provides outlooks on representative achievements during the later part of the century. The book provides many original quotations from outstanding mathematicians as well as an extensive bibliography of the seminal publications. It will be an interesting and useful reference work for graduate students, lecturers, and all professional mathematicians and other scientists with an interest in the history of mathematics.




Series and Products in the Development of Mathematics: Volume 1


Book Description

This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.




Series and Products in the Development of Mathematics: Volume 2


Book Description

This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.