Mitochondrial Bioenergetics


Book Description

Increasing interest in mitochondrial bioenergetics is being driven by the impact of drug and environmental chemical-induced disturbances of mitochondrial function as well as hereditary deficiencies and the progressive deterioration of bioenergetic performance with age. These initiatives have fostered the investigation of genetic and environmental influences on bioenergetics. In Mitochondrial Bioenergetics: Methods and Protocols, researchers in the field detail the practical principles and assays designed to derive quantitative assessment of each set of parameters that reflect different aspects of mitochondrial bioenergetics. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls Authoritative and practical, Mitochondrial Bioenergetics: Methods and Protocols helps elevate the quality and rate of investigative discoveries regarding disease states associated with environmental or genetic influences on mitochondrial bioenergetics.




Clinical Bioenergetics


Book Description

Clinical Bioenergetics: From Pathophysiology to Clinical Translation provides recent developments surrounding the etiology and pathophysiology of inherited and acquired energy-delated disorders. Across 40 chapters, world leaders in bioenergetics and mitochondrial medicine discuss novel methodologies designed to identify deficiencies in cellular bioenergetics, as well as the safety and efficacy of emerging management strategies to address poor cellular bioenergetics. Topics discussed include the omics landscape of impaired mitochondrial bioenergetics, hormones, tissue bioenergetics and metabolism in humans. Disease-specific case studies, modes of analysis in clinical bioenergetics, and therapeutic opportunities for impaired bioenergetics, addressing both known treatment pathways and future directions for research, are discussed in-depth. Diseases and Disorders examined include brain injury, chronic fatigue syndrome, psychiatric disorders, pulmonary fibrosis, neurodegenerative disorders, heart failure, chronic kidney disease, obesity, and insulin resistance, among others. - Provides a thorough discussion of foundational aspects of bioenergetics and disease, modes of analysis, and treatments for impaired bioenergetics - Discusses the role of bioenergetics and treatment pathways in brain injury, chronic fatigue syndrome, psychiatric disorders, pulmonary fibrosis, neurodegenerative disorders, heart failure, chronic kidney disease, obesity, and insulin resistance, among other diseases and disorders - Features chapter contributions from international leaders in translational bioenergetics research and clinical practice




Bioenergetics


Book Description

Extensively revised, the fourth edition of this highly successful book takes into account the many newly determined protein structures that provide molecular insight into chemiosmotic energy transduction, as well as reviewing the explosive advances in 'mitochondrial physiology'-the role of the mitochondria in the life and death of the cell. Covering mitochondria, bacteria and chloroplasts, the fourth edition of Bioenergetics provides a clear and comprehensive account of the chemiosmotic theory and its many applications. The figures have been carefully designed to be memorable and to convey the key functional and mechanistic information. Written for students and researchers alike, Bioenergetics is the most well-known, current and respected text on chemiosmotic theory and membrane bioenergetics available. - BMA Medical Book Awards 2014-Highly Commended, Basic and Clinical Sciences,2014,British Medical Association - Chapters are now divided between three interlocking sections: basic principles, structures and mechanisms, and mitochondrial physiology - Covers new advances in the structure and mechanism of key bioenergetic proteins, including complex I of the respiratory chain and transport proteins - Details cellular bioenergetics, mitochondrial cell biology and signal transduction, and the roles of mitochondria in physiology, disease and aging - Offers readers clear, visual representation of structural concepts through full colour figures throughout the book







Principles of Bioenergetics


Book Description

Principles of Bioenergetics summarizes one of the quickly growing branches of modern biochemistry. Bioenergetics concerns energy transductions occurring in living systems and this book pays special attention to molecular mechanisms of these processes. The main subject of the book is the "energy coupling membrane" which refers to inner membranes of intracellular organelles, for example, mitochondria and chloroplasts. Cellular cytoplasmic membranes where respiratory and photosynthetic energy transducers, as well as ion-transporting ATP-synthases (ATPases) are also part of this membrane. Significant attention is paid to the alternative function of mitochondria as generators of reactive oxygen species (ROS) that mediate programmed death of cells (apoptosis and necrosis) and organisms (phenoptosis). The latter process is considered as a key mechanism of aging which may be suppressed by mitochondria-targeted antioxidants.




Thirty Years of Progress in Mitochondrial Bioenergetics and Molecular Biology


Book Description

The topics contained in this book represent timely and currently exciting areas of research focused on mitochondria. It forms a comprehensive and up-to-date record of present knowledge at the molecular level of many important mitochondrial processes. Major achievements as well as new openings in the field have been stressed in many of the contributions to the book. Thus, it represents a valuable source and reference book, comprising the most recent results in this area. The topics treated should attract the attention of scientists from various fields, who are interested in bioenergetics, molecular biology and pathology of mitochondria.




Apoptosis and Beyond


Book Description

These volumes teach readers to think beyond apoptosis and describes all of the known processes that cells can undergo which result in cell death This two-volume source on how cells dies is the first, comprehensive collection to cover all of the known processes that cells undergo when they die. It is also the only one of its kind to compare these processes. It seeks to enlighten those in the field about these many processes and to stimulate their thinking at looking at these pathways when their research system does not show signs of activation of the classic apoptotic pathway. In addition, it links activities like the molecular biology of one process (eg. Necrosis) to another process (eg. apoptosis) and contrasts those that are close to each. Volume 1 of Apoptosis and Beyond: The Many Ways Cells Die begins with a general view of the cytoplasmic and nuclear features of apoptosis. It then goes on to offer chapters on targeting the cell death mechanism; microbial programmed cell death; autophagy; cell injury, adaptation, and necrosis; necroptosis; ferroptosis; anoikis; pyronecrosis; and more. Volume 2 covers such subjects as phenoptosis; pyroptosis; hematopoiesis and eryptosis; cyclophilin d-dependent necrosis; and the role of phospholipase in cell death. Covers all known processes that dying cells undergo Provides extensive coverage of a topic not fully covered before Offers chapters written by top researchers in the field Provides activities that link and contrast processes to each other Apoptosis and Beyond: The Many Ways Cells Die will appeal to students and researchers/clinicians in cell biology, molecular biology, oncology, and tumor biology.




Metabolic Interaction in Infection


Book Description

This book focuses on host–pathogen interactions at the metabolic level. It explores the metabolic requirements of the infectious agents, the microbial metabolic pathways that are dedicated to circumvent host immune mechanisms as well as the molecular mechanisms by which pathogens hijack host cell metabolism for their own benefit. Finally, it provides insights on the possible clinical and immunotherapeutic applications, as well as on the available experimental and analytical methods. The contributions break new ground in understanding the metabolic crosstalk between host and pathogen.




Mitochondrial Regulation


Book Description

This fully updated edition explores the different pathways that converge into the regulation of mitochondrial function. The book integrates mitochondria with other cellular components, discussing the dynamic properties of mitochondria with an emphasis on how these processes respond to signaling events and how they affect cellular metabolism. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Mitochondrial Regulation: Methods and Protocols, Second Edition is an ideal guide for advanced undergraduates, graduates, postgraduates, and beginning researchers in the areas of molecular and cellular biology, biochemistry, and bioenergetics.




Power, Sex, Suicide


Book Description

Mitochondria are tiny structures located inside our cells that carry out the essential task of producing energy for the cell. They are found in all complex living things, and in that sense, they are fundamental for driving complex life on the planet. But there is much more to them than that. Mitochondria have their own DNA, with their own small collection of genes, separate from those in the cell nucleus. It is thought that they were once bacteria living independent lives. Their enslavement within the larger cell was a turning point in the evolution of life, enabling the development of complex organisms and, closely related, the origin of two sexes. Unlike the DNA in the nucleus, mitochondrial DNA is passed down exclusively (or almost exclusively) via the female line. That's why it has been used by some researchers to trace human ancestry daughter-to-mother, to 'Mitochondrial Eve'. Mitochondria give us important information about our evolutionary history. And that's not all. Mitochondrial genes mutate much faster than those in the nucleus because of the free radicals produced in their energy-generating role. This high mutation rate lies behind our ageing and certain congenital diseases. The latest research suggests that mitochondria play a key role in degenerative diseases such as cancer, through their involvement in precipitating cell suicide. Mitochondria, then, are pivotal in power, sex, and suicide. In this fascinating and thought-provoking book, Nick Lane brings together the latest research findings in this exciting field to show how our growing understanding of mitochondria is shedding light on how complex life evolved, why sex arose (why don't we just bud?), and why we age and die. This understanding is of fundamental importance, both in understanding how we and all other complex life came to be, but also in order to be able to control our own illnesses, and delay our degeneration and death. 'An extraordinary account of groundbreaking modern science... The book abounds with interesting and important ideas.' Mark Ridley, Department of Zoology, University of Oxford




Recent Books