Model-Based Control of Particulate Processes


Book Description

Particulate processes are characterized by the co-presence of a contin uous phase and a dispersed (particulate) phase, and are widely used in industry for the manufacturing of many high-value products. Examples include the crystallization of proteins for pharmaceutical applications, the emulsion polymerization reactors for the production of latex, the aerosol synthesis of titania powder used in the production of white pig ments, and the thermal spray processing of nanostructured coatings. It is now well understood that the physico-chemical and mechanical properties of materials made with particulates depend heavily on the characteristics of the corresponding particle size distribution. This fact, together with recent advances in dynamics of infinite-dimensional sys tems and nonlinear control theory, has motivated extensive research on model-based control of particulate processes using population balances to achieve tight control of particle size distributions. This book - the first of its kind - presents general methods for the synthesis of nonlinear, robust and constrained feedback controllers for broad classes of particulate process models and illustrates their applica tions to industrially-important crystallization, aerosol and thermal spray processes. The controllers use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output tracking, attenuation of the effect of model uncertainty and han dling of actuator saturation.







The Control Handbook (three volume set)


Book Description

At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.







Theory of Particulate Processes


Book Description

Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization, Second Edition covers the numerous population balance-based particulate studies. This edition emerged from the notes for an industrial short course on crystallization. This book is divided into 10 chapters and begins with an outline of the methods for representation of particle distributions and a systematic approach to the predictive modeling of processes where there is a need to characterize distributions in time and space and by some identifying property. The succeeding chapters provide a specific and more elementary approach to modeling crystal size distributions, as well as the modeling the kinetics of crystal nucleation and growth rates. Other chapters discuss a wide range of system analysis and design considerations specific to crystallization for both the steady state and unsteady state. The final chapters illustrate the use of a population balance analysis to interpret data from both laboratory and process equipment. These chapters also explore a wide variety of particulate processes and systems for which the population balance analysis is useful. This book is of great value to graduate students with particulate systems course.




Accelerating Population Balance Model - Based Particulate Process Simulations Via Parallel Computing


Book Description

The use of Population Balance Models (PBM) for simulating dynamics of particulate systems are inevitably limited at some point by the demands they place on computational resources. PBMs are widely used to describe the time evolutions and distributions of many industrial particulate processes, and its efficient and quick simulation would certainly be beneficial for process design, control and optimization. This thesis is an elucidation of how MATLAB's Parallel Computing Toolbox (PCT), a third-party toolbox called JACKET, and the MATLAB Distributed Computing Server (MDCS) may be combined with algorithmic modification of the PBM to speed up these computations on a CPU (Central Processing Unit), GPU (Graphics Processing Unit) and a computer cluster respectively. Parallel algorithms were developed for three dimensional and four dimensional population balance models incorporating hardware class-specific parallel constructs such as SPMD and gfor. Results indicate significant reduction in computational time without compromising numerical accuracy for all cases except for the GPU. The GPU seemed promising for larger problems despite its limitations of lower clock speeds and on-board memory compared to the CPU. Evaluations of the speedup and scalability further affirm the algorithms' performance.




Predictive Process Control of Crowded Particulate Suspensions


Book Description

Wisdom is the principal thing; therefore get wisdom; and with all thy getting, get understanding. Proverbs 4:7 In the early chapters of the book of Proverbs there is a strong emphasis on three words: knowledge, understanding, and wisdom. Perhaps we can apply these words to our philosophy behind the technology of Predictive Process Control. Knowledge is the accumulation of information provided by education as we begin to store the data in our brains that should prepare us for the challenges of the manufacturing environment. It applies to every level and every opportunity of education, formal and informal. This is simply to Know, without any requirement except a good memory, and is the basis for the following two thoughts. Understanding is the assimilation of knowledge, or the thinking process, as we begin to arrange and rearrange the data we Know for quick recall as it may be needed. This also applies to every level and opportunity of education. It is Know-Why based upon what we Know, and it requires some scepticism of oversimplified answers and a hunger for mental consistency. Wisdom is the application of both knowledge and understanding in real life enterprises. As we apply both our knowledge and understanding in those situations, all three are further enhanced by each progressive experience. This is that wonderful Know-How - to apply our education based upon Know-why, which was based upon Knowledge - which provides the confidence we need to advance in all phases of performance.




Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles


Book Description

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.




Design and Processing of Particulate Products


Book Description

A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.