Modeling Fracture Behavior in Precision Glass Molding


Book Description

A temperature and strain rates dependent fracture model is developed based on Weibull statistics to quantitatively describe the brittle-ductile transition of glass fracture in precision glass molding process. Under the assistance of FEM simulation, this fracture model can be used to calculate the fracture probability of glass during the precision glass molding process. Meanwhile, the most probable fracture timing, location of fracture initiation and fracture pattern can be also predicted.




Deformation and Fracture Behaviour of Polymer Materials


Book Description

This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.







Chemical Abstracts


Book Description







Deformation and Fracture Behaviour of Polymers


Book Description

This book gives an overview of recent advances in the fracture mechanics of polymers, morphology property correlations, hybrid methods for polymer testing and polymer diagnostics, and biocompatible materials and medical prostheses, as well as application examples and limits.










Elastomeric Polymers with High Rate Sensitivity


Book Description

Recent investigations into blast-resistant properties of polyureas and other multi-phase polymeric elastomers indicate that they can dissipate broad bands of frequencies such as those encountered in blast events. In this unique book, Elastomeric Polymers with High Rate Sensitivity, Dr. Roshdy Barsoum and expert contributors bring together the cutting-edge testing methodologies, material properties, and critical design data for engineers seeking to deploy this technology. Where conventional methods of resisting blast, shockwave, and penetration are expensive, time-consuming and impractical, high-strain rate elastomeric polymers (HSREP) can be cheaper, quicker, and more easily applied to new and old materials alike. This book aids both military and civilian engineers in a range of applications, from buildings and tunnels to lightweight armor, ships, and aircraft. The book features constitutive models for software developers designing with these advanced polymers, as well as a discussion of the mechanisms of interaction between high-strain rate polymers and other materials. It also thoroughly covers HSREP engineering methods to achieve other unique properties, such as fireproofing. - Material properties and design data included to enable engineers to successfully deploy this technology - Cheaper, quicker, and more easily implemented than traditional methods of increasing blast and ballistic performance - A how-to guide to the engineering of high strain rate elastomeric polymers to achieve other useful properties, such as fireproofing