Journal of Rheology


Book Description

Includes abstracts from the Journal of the Society of Rheology, Japan.




Classical and Modern Engineering Methods in Fluid Flow and Heat Transfer


Book Description

This book presents contemporary theoretical methods in fluid flow and heat transfer, emphasizing principles of investigation and modeling of natural phenomena and engineering processes. It is organized into four parts and 12 chapters presenting classical and modern methods. Following the classical methods in Part 1, Part 2 offers in-depth coverage of analytical conjugate methods in convective heat transfer and peristaltic flow. Part 3 explains recent developments in numerical methods including new approaches for simulation of turbulence by direct solution of Navier-Stokes equations. Part 4 provides a wealth of applications in industrial systems, technology processes, biology, and medicine. More than a hundred examples show the applicability of the methods in such areas as nuclear reactors, aerospace, crystal growth, turbine blades, electronics packaging, optical fiber coating, wire casting, blood flow, urinary problems, and food processing. Intended for practicing engineers and students, the book balances strong formulation of problems with detailed explanations of definitions and terminology. Author comments give attention to special terms like singularity, order of magnitude, flow stability, and nonisothermicity characteristics. More than 400 exercises and questions are offered, many of which divide derivations between you and the author. For these exercises, the author describes the solution method and the results in the text, but you are directed to complete specific portions of the solutions. You then have a choice to accept the results or to further explore the underlying problem. Extensive references are provided for further study.




Engineering Rheology


Book Description

This book sets out to provide a guide, with examples, for those who wish to make predictions about the mechanical and thermal behaviour of non-Newtonian materials in engineering and processing technology. After an introductory survey of the field and a review of basic continuum mechanics, the radical differences between elongational and shear behaviour are shown. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to useful mathematical desriptions of materials for engineering applications. As examples of nearly-viscometric and nearly-elongational flows, there is a discussion of lubrication and related shearing flows, and fibre- spinning and film-blowing respectively. A long chapter is devoted to the important new field of computational rheology, and this is followed by chapters on stability and turbulence and the all-important temperature effects in flow. This new edition contains much new material not available in book form elsewhere-for example wall slip, suspension rheology, computational rheology and new results in stability theory.







Computational Analysis of Polymer Processing


Book Description

Large, fast, digital computers have been widely used in engineering practice and their use has had a large impact in many fields. Polymer processing is no exception, and there is already a substantial amount of literature describing ways in which processes can be analysed, designed or controlled using the potentialities of modern computers. The emphasis given varies with the application, and most authors tend to quote the results of their calculations rather than describing in any detail the way the calculations were undertaken or the difficulties experienced in carrying them out. We aim to give here as useful and connected an account as we can of a wide class of applications, for the benefit of scientists and engineers who find themselves working on polymer processing problems and feel the need to undertake such calculations. The major application we have in mind is the simulation of the dynamics ofthe various physical phenomena which arise in a polymer process treated as a complex engineering system. This requires that the system be reasonably well represented by a limited number of relatively simple subprocesses whose connections can be clearly identified, that the domi nant physical effects relevant to each subprocess can be well defined in a suitable mathematical form and that the sets of equations and boundary conditions developed to describe the whole system can be successfully discretised and solved numerically.




Extrusion


Book Description

The second edition of Extrusion is designed to aid operators, engineers, and managers in extrusion processing in quickly answering practical day-to-day questions. The first part of the book provides the fundamental principles, for operators and engineers, of polymeric materials extrusion processing in single and twin screw extruders. The next section covers advanced topics including troubleshooting, auxiliary equipment, and coextrusion for operators, engineers, and managers. The final part provides applications case studies in key areas for engineers such as compounding, blown film, extrusion blow molding, coating, foam, and reprocessing. This practical guide to extrusion brings together both equipment and materials processing aspects. It covers basic and advanced topics, for reference and training, in thermoplastics processing in the extruder. Detailed reference data are provided on such important operating conditions as temperatures, start-up procedures, shear rates, pressure drops, and safety. - A practical guide to the selection, design and optimization of extrusion processes and equipment - Designed to improve production efficiency and product quality - Focuses on practical fault analysis and troubleshooting techniques




Complex Systems


Book Description

Sendai, Japan, 25-28 September 2007