Fundamentals of Stack Gas Dispersion


Book Description

This is the new, fourth edition of the book on dispersion modeling of continuous, buoyant air pollution plumes which takes nothing for granted. Every equation is completely derived step-by-step without any complicated or advanced mathematics. Every constraint and assumption is fully explained. A set of self-study exercises is also included with the book.The subjects covered in the book include atmospheric turbulence and stability classes, buoyant plume rise, Gaussian dispersion calculations and modeling, time-averaged concentrations, wind velocity profiles, fumigations, trapped plumes, flare stack plumes and much more ... with a great many example calculations. Copies of the book have been purchased in the U.S.A., Canada, Mexico, South America, Europe, Australia, Africa and Asia (in a total of 57 countries), and are available in over 130 libraries worldwide. The book has been very widely referenced and cited in the technical literature and on the Internet.




Lectures on Air Pollution Modeling


Book Description

This volume is concerned with the physics and the application of air pollution modeling on scales up to about 50 km. Its eight chapters, comprising the diverse points of view of seven authors, remain substantially in their original, lecture-note form. The result is not a smoothly flowing monograph but instead a richly textured, lively collection of the seasoned thoughts and perspectives of experienced researchers and practitioners.




Air Pollution Modeling


Book Description

Finishing this book is giving me a mixture of relief, satisfaction and frus tration. Relief, for the completion of a project that has taken too many of my evenings and weekends and that, in the last several months, has become almost an obsession. Satisfaction, for the optimistic feeling that this book, in spite of its many shortcomings and imbalances, will be of some help to the air pollution scientific community. Frustration, for the impossibility of incorporating newly available material that would require another major review of several key chap ters - an effort that is currently beyond my energies but not beyond my desires. The first canovaccio of this book came out in 1980 when I was invited by Computational Mechanics in the United Kingdom to give my first Air Pollution Modeling course. The course material, in the form of transparencies, expanded, year after year, thus providing a growing working basis. In 1985, the ECC Joint Research Center in Ispra, Italy, asked me to prepare a critical survey of mathe matical models of atmospheric pollution, transport and deposition. This support gave me the opportunity to prepare a sort of "first draft" of the book, which I expanded in the following years.







Plume Rise


Book Description




Air Dispersion Modeling


Book Description

A single reference to all aspects of contemporary air dispersion modeling The practice of air dispersion modeling has changed dramatically in recent years, in large part due to new EPA regulations. Current with the EPA's 40 CFR Part 51, this book serves as a complete reference to both the science and contemporary practice of air dispersion modeling. Throughout the book, author Alex De Visscher guides readers through complex calculations, equation by equation, helping them understand precisely how air dispersion models work, including such popular models as the EPA's AERMOD and CALPUFF. Air Dispersion Modeling begins with a primer that enables readers to quickly grasp basic principles by developing their own air dispersion model. Next, the book offers everything readers need to work with air dispersion models and accurately interpret their results, including: Full chapter dedicated to the meteorological basis of air dispersion Examples throughout the book illustrating how theory translates into practice Extensive discussions of Gaussian, Lagrangian, and Eulerian air dispersion modeling Detailed descriptions of the AERMOD and CALPUFF model formulations This book also includes access to a website with Microsoft Excel and MATLAB files that contain examples of air dispersion model calculations. Readers can work with these examples to perform their own calculations. With its comprehensive and up-to-date coverage, Air Dispersion Modeling is recommended for environmental engineers and meteorologists who need to perform and evaluate environmental impact assessments. The book's many examples and step-by-step instructions also make it ideal as a textbook for students in the fields of environmental engineering, meteorology, chemical engineering, and environmental sciences.




Lectures on Air Pollution and Environmental Impact Analyses


Book Description

This publication of the AMS contains all the lectures that were presented at the AMS Workshop on Meteorology and Environmental Assessment held in Boston, MA on September 29-October 3, 1975. Topics include: The dispersion of materials in the atmospheric boundary layer, atmospheric dispersion models for environmental pollution applications, plume rise predictions, turbulent diffusion and pollutant transport in shoreline environments, urban diffusion problems, atmospheric transformations of pollutants, observational systems and techniques in air pollution meteorology, and federal government requirements for environmental impact assessment.




Practical Meteorology


Book Description

A quantitative introduction to atmospheric science for students and professionals who want to understand and apply basic meteorological concepts but who are not ready for calculus.







Workbook of Atmospheric Dispersion Estimates


Book Description

This completely updated and revised Second Edition of the popular Workbook of Atmospheric Dispersion Estimates provides an important foundation for understanding dispersion modeling as it is being practiced today. The book and accompanying diskette will help you determine the impacts of various sources of air pollution, including the effects of wind and turbulence, plume rise, and Gaussian dispersion and its limitations. Information is shown in summary graphs as well as in equations. The programs included on the diskette allow you to "get the feel" for the results you'll obtain through the input of various combinations of parameter values. The sensitivity of data to various parameters can be easily explored by changing one value and seeing the effect on the results. The book presents 37 example problems with solutions to show the estimation of atmospheric pollutant concentrations for many situations.