Modeling of Microscale Transport in Biological Processes


Book Description

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.




Modeling of Microscale Transport in Biological Processes


Book Description

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels. - Features recent developments in theoretical and computational modeling for clinical researchers and engineers - Furthers researcher understanding of fluid flow in biological media and focuses on biofluidics at the microscale - Includes chapters expertly authored by internationally recognized authorities in the fundamental and applied fields that are associated with microscale transport in living media




Intensification of Sorption Processes


Book Description

Intensification of Sorption Processes: Active and Passive Mechanisms introduces a number of selected, advanced topics in sorption processes/process intensification, covering both theoretical and applicable aspects. The first part of the book is devoted to the study of sorption processes based on active mechanisms, including ultrasonic, microwave, high-gravity, electrical and magnetic fields, while the second part covers passive mechanisms like nanostructures and nanofluids, membrane, supercritical fluids and sorption processes based on geometry design and equipment structure. The focus of the book is on key aspects of novel process intensification technologies (processes and equipment), i.e., absorption and adsorption, working principles, and design and applications. - Covers all developments in the field of active and passive mechanisms for sorption processes - Introduces basic principles of any intensified sorption process, along with details of equipment - Evaluates industrial upscaling, economic evaluation/justification, future opportunities and challenges for each sorption process




Microfluidic Cell Culture Systems


Book Description

The fields of microfluidics and BioMEMS are significantly impacting cell biology research and applications through the application of engineering solutions to human disease and health problems. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. This new professional reference applies the techniques of microsystems to cell culture applications. The authors provide a thoroughly practical guide to the principles of microfluidic device design and operation and their application to cell culture techniques. The resulting book is crammed with strategies and techniques that can be immediately deployed in the lab. Equally, the insights into cell culture applications will provide those involved in traditional microfluidics and BioMEMS with an understanding of the specific demands and opportunities presented by biological applications. The goal is to guide new and interested researchers and technology developers to the important areas and state-of-the-practice strategies that will enhance the efficiency and value of their technologies, devices and biomedical products. - Provides insights into the design and development of microfluidic systems with a specific focus on cell culture applications - Focuses on strategies and techniques for the design and fabrication of microfluidic systems and devices for cell culture - Provides balanced coverage of microsystems engineering and bioengineering




Indoor Environmental Quality


Book Description

​This volume presents selected papers presented during the First Asian Conference on Indoor Environmental Quality (ACIEQ). The contents cover themes of indoor air quality monitoring and modeling; the influence of confounding factors like thermal comfort parameters, such as temperature and relative humidity with respect to different building types, e.g., residential, commercial, institutional; ventilation characteristics, lighting and acoustics. It also focuses on people's performance, productivity, and behavior with respect to their exposure to various indoor air pollutants and parameters influencing the overall indoor environmental quality. This volume is primarily aimed at researchers working in environmental science and engineering, building architecture and design, HVAC and ventilation, public health, and epidemiology. The contents of this volume will also be useful to policy makers working on occupational health and building codes.




Bionanotechnology


Book Description

Bionanotechnology is the key integrative technology of the 21st century and aims to use the knowledge, gathered from the natural construction of cellular systems, for the advancement of science and engineering. Investigating the topology and communication processes of cell parts can lead to invention of novel biological devices with exciting applications. Though microscale to nanoscale research offers an excellent space for the development of futuristic technologies, a number of challenges must be overcome. Due to paucity of a dedicated literature on the protein based nanodevices we bring you this monograph that combines collective research works of scientists probing into this fascinating universe of bionanotechnology. The monograph has been written with an aim of surveying engineering design principles of biomolecular nanodevices, prototype nanodevices based on redox proteins, bacteriorhodopsins and natural fibers, and touching upon the future developments in the field.




Encyclopedia of Microfluidics and Nanofluidics


Book Description

Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.







Microfluidic Devices in Nanotechnology


Book Description

Nanotechnology, especially microfabrication, has been affecting every facet of traditional scientific disciplines. The first book on the application of microfluidic reactors in nanotechnology, Microfluidic Devices in Nanotechnology provides the fundamental aspects and potential applications of microfluidic devices, the physics of microfluids, specific methods of chemical synthesis of nanomaterials, and more. As the first book to discuss the unique properties and capabilities of these nanomaterials in the miniaturization of devices, this text serves as a one-stop resource for nanoscientists interested in microdevices.




Microfluidics


Book Description

Microfluidics: Modeling, Mechanics and Mathematics, Second Edition provides a practical, lab-based approach to nano- and microfluidics, including a wealth of practical techniques, protocols and experiments ready to be put into practice in both research and industrial settings. This practical approach is ideally suited to researchers and R&D staff in industry. Additionally, the interdisciplinary approach to the science of nano- and microfluidics enables readers from a range of different academic disciplines to broaden their understanding. Alongside traditional fluid/transport topics, the book contains a wealth of coverage of materials and manufacturing techniques, chemical modification/surface functionalization, biochemical analysis, and the biosensors involved. This fully updated new edition also includes new sections on viscous flows and centrifugal microfluidics, expanding the types of platforms covered to include centrifugal, capillary and electro kinetic platforms. - Provides a practical guide to the successful design and implementation of nano- and microfluidic processes (e.g., biosensing) and equipment (e.g., biosensors, such as diabetes blood glucose sensors) - Provides techniques, experiments and protocols that are ready to be put to use in the lab, or in an academic or industry setting - Presents a collection of 3D-CAD and image files on a companion website