Modelling and Optimization of Biotechnological Processes


Book Description

Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the ?nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti?cial intelligence, system identi?cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the ?nal product is achieved using modi?ed genetic algorithms to determine optimal feed rate pro?les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e?ective methodology for optimizing biotechnological processes.




Modelling and Control of Biotechnological Processes


Book Description

Modelling and Control of Biotechnological Processes contains the proceedings of the International Federation of Automatic Control's First Symposium on Modeling and Control of Biotechnological Processes held in Noordwijkerhout, The Netherlands, on December 11-13, 1985. The papers explore modeling and control of biotechnological processes such as fermentation and biological wastewater treatment. This book consists of 37 chapters divided into 11 sections and begins with a discussion on the control of fermentation processes; modeling of biotechnical processes; and application of measurement and estimation techniques to biotechnology. The following sections focus on adaptive control theory, applications of adaptive control, and control and modeling of bioreactors. The reader is also introduced to measurement techniques and sensors, with emphasis on pyrolysis mass spectrometry; rapid bioelectrochemical methods; and a self-tuning controller for multiloop controlled fed-batch fermentation. The remaining sections deal with parameter identification and estimation; Kalman filtering techniques; optimization of production processes; modeling of microkinetics; and optimization theory. This monograph will be of interest to researchers and practitioners in the field of biotechnology.




Biotechnology for Biofuel Production and Optimization


Book Description

Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. - Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules - Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis - Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis - Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules - Explores biohybrid methods for harvesting bioenergy - Discusses bioreactor design and optimization of scale-up




Modelling and Control of Biotechnical Processes


Book Description

Modeling and Control of Biotechnical Processes covers the proceedings of the First International Federation of Automatic Control Workshop by the same title, held in Helsinki, Finland on August 17-19, 1982. This book is organized into seven sections encompassing 37 chapters. The opening section deals with the measurement techniques in fermentation processes and the use of automated analyzers to control microbial processes. The next sections consider the concepts of bioreactor modeling and related problems, as well as the modeling and control of biological wastewater treatment processes. Other sections discuss the economic and static optimization, the computer control of production processes, and the application of estimation and identification methods to biotechnological processes. The final sections explore the principles of real-time analysis, use of computer control in specific biotechnical production, process control design, and the modeling of adaptive control. This book is of great value to biotechnologists, biochemists, and control engineers.




Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design


Book Description

This volume collects together the presentations at the Eighth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2014, an event that brings together researchers, educators, and practitioners to identify new challenges and opportunities for process and product design. The chemical industry is currently entering a new phase of rapid evolution. The availability of low-cost feedstocks from natural gas is causing renewed investment in basic chemicals in the OECD, while societal pressures for sustainability and energy security continue to be key drivers in technology development and product selection. This dynamic environment creates opportunities to launch new products and processes and to demonstrate new methodologies for innovation, synthesis and design. FOCAPD-2014 fosters constructive interaction among thought leaders from academia, industry, and government and provides a showcase for the latest research in product and process design. - Focuses exclusively on the fundamentals and applications of computer-aided design for the process industries. - Provides a fully archival and indexed record of the FOCAPD14 conference - Aligns the FOCAPD series with the ESCAPE and PSE series




Process Optimization


Book Description

This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.




Modelling and Optimization of Biotechnological Processes


Book Description

Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the ?nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti?cial intelligence, system identi?cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the ?nal product is achieved using modi?ed genetic algorithms to determine optimal feed rate pro?les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e?ective methodology for optimizing biotechnological processes.




Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes


Book Description

Richard Fox Chairman, Scientific Programme Committee Between 25th and 29th September, 1988, 243 people who either apply or research the use of computers in fermentation gathered together at Robinson College, Cambridge, UK. They came from 30 countries. The conference brought together two traditions. Firstly, it continued the series on Computer Applications in Fermentation Technology (ICCAFT) inaugurated by Henri Blanchere in Dijon in 1973 and carried forward in Philadelphia and Manchester. Secondly, it brought the expertise of the many members of the International Federation of Automatic Control (IFAC), who focused their attention on biotechnology at Noordwijkerhout in the Netherlands in December, 1985. I am happy to say that the tradition carries on and a successor meeting will hopefully take place in the USA in 1991. If you find these proceedings useful or stimulating, then we hope to see you there. We set out to make ICCAFT4 a close-knit friendly conference. We housed all who cared to in Robinson College itself and organised no parallel sessions. Because we, the organisers, experience difficulty with the jargon of our colleagues from other disciplines, we asked Bruce Beck to present a breakfast tutorial on modern control and modelling techniques, and we set up informal panel discussions after dinner on two evenings. Neville Fish chaired a forum on the microbiological principles behind models, while Professors Derek Linkens and Ron Leigh led a discussion on expert systems in control.




Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control


Book Description

Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.




European Symposium on Computer Aided Process Engineering - 12


Book Description

This book contains 182 papers presented at the 12th Symposium of Computer Aided Process Engineering (ESCAPE-12), held in The Hague, The Netherlands, May 26-29, 2002. The objective of ESCAPE-12 is to highlight advances made in the development and use of computing methodologies and information technology in the area of Computer Aided Process Engineering and Process Systems Engineering. The Symposium addressed six themes: (1) Integrated Product&Process Design; (2) Process Synthesis & Plant Design; (3) Process Dynamics & Control; (4) Manufacturing & Process Operations; (5) Computational Technologies; (6) Sustainable CAPE Education and Careers for Chemical Engineers. These themes cover the traditional core activities of CAPE, and also some wider conceptual perspectives, such as the increasing interplay between product and process design arising from the often complex internal structures of modern products; the integration of production chains creating the network structure of the process industry and optimization over life span dimensions, taking sustainability as the ultimate driver.




Recent Books