Modelling of Concrete Performance


Book Description

The intial defects induced at early age of concrete hardening: thermal strains, shrinkage, creep and the associated risks of cracking are one of the governing factors for long-term performance of concrete. Proposing a simplified but intergrated scenario of concrete life cycle simulation method, this book examines and explains the vast amount of experimental observations related to hardening concrete using a common set of physical laws. The methods used focus on the three primary processes common to the development of all cementitious materials: hydration, moisture transport and structure formation. The authors describe an intergrated theoretical and computational platform from which to examine and assess the quality and structural durability of concrete at an early age. This represents a new approach to the problem of evaluating durability performance and presents a practical methodology for researchers and practitioners in the field of concrete technology. The proposed scheme may be used in practical computational simulation methods, with the relevant software available on the Internet, and is a valuable guide to those engaged in concrete design.




Modelling of Concrete Performance


Book Description

Proposing a simplified but intergrated scenario of concrete life cycle simulation method, this book examines and explains the vast amount of experimental observations related to hardening concrete using a common set of physical laws.




Physical Properties and Behaviour of High-performance Concrete at High Temperature


Book Description

This book presents the work done by the RILEM Technical Committee 227-HPB (Physical properties and behaviour of High-Performance Concrete at high temperature). It contains the latest research results on the behaviour of high-performance concretes at high temperature. The book presents the state of the art of experimental data on High-Performance concretes and it collects and synthesizes useful data about concrete behaviour at high temperatures. The book is divided into independent chapters dealing with degradation reactions in concrete exposed to high temperatures; mass transport properties; thermal properties; and mechanical properties. The results presented especially target a group of users composed by universities and testing laboratories, building material companies and industries, material scientists and experts, building and infrastructure authorities, designers and civil engineers.




Constitutive Modelling of High Strength/high Performance Concrete


Book Description

High Strength/High Performance Concrete (HSC/HPC) continues to be the object of particular interest and extensive research, and its use in construction is increasing continuously. fib Bulletin 42 summarises the available information on the material behaviour of HSC/HPC, and develops a set of code-type constitutive relations as an extension of CEB-FIP Model Code 1990. Literature on experimental data and international guidelines, standards and recommendations were reviewed, and already-existing constitutive relations and models were evaluated. In addition to a number of material laws chosen and adjusted for this report, some new constitutive relations were developed based on the collected data. The criteria for the choice of the existing relations as well as the development of the new constitutive relations involved their simplicity and operationality (code-type mathematical formulations). Furthermore, they had to be physically sound and if possible describe the behaviour of both high-performance and normal strength concretes by a unique relation. Finally, compliance with the specifications given in the CEB-FIP Model Code 1990 was examined. This State-of-art report is intended for engineers and represents a summary of the relevant knowledge available to and possessed by the members of the Task Group at the time of its drafting.




Measuring, Monitoring and Modeling Concrete Properties


Book Description

This state-of-the-art volume covers the latest and future trends in measuring, monitoring and modeling the properties of cement based materials. The book contains 94 papers and presents the latest research work of renowned experts. It acts as a survey of the most up-to-date research in the field.




Multi-Scale Modeling of Structural Concrete


Book Description

Increases in computer power have now enabled engineers to combine materials science with structural mechanics in the design and the assessment of concrete structures. The techniques developed have become especially useful for the performance assessment of such structures under coupled mechanistic and environmental actions. This allows effective management of infrastructure over a much longer life cycle, thus satisfying the requirements for durability and sustainability. This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.




Computational Modelling of Concrete Structures


Book Description

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and




Performance of Cement-Based Materials in Aggressive Aqueous Environments


Book Description

Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial. These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening. Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods. Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represents the work of many well-known and respected authors who contributed chapters or parts of chapters. Four main themes were addressed: I. Nature and kinetics of degradation and deterioration mechanisms of cement-based materials in aggressive aqueous environments, II. Modelling of deterioration in such environments, III. Test methods to assess performance of cement-based materials in such environments, and which can be used to characterise and rate relative performance and inform long term predictions, IV. Engineering implications and consequences of deterioration in aggressive aqueous environments, and engineering approaches to the problem.




Stability and Failure of High Performance Composite Structures


Book Description

This book is written to introduce the application of high-performance composite materials such as fiber reinforced polymers, functionally graded composites, and sustainable fiber reinforced composites for development of thin-walled plated structures, beams, girders, and deck structures subjected to different kinds of loads. This book also includes test cases and its validation with finite element method using general purpose commercial computer software. Moreover, the book also deals with design methodology of advanced composite materials based on different applications. The comprehensive overview of the state-of-the-art research on the high-performance composite structures dealing with their stability, response, and failure characteristics will be of significant interest to scientists, researchers, students, and engineers working in the thrust area of advanced composite structures. This book is also helpful for Ph.D. candidates for developing their fundamental understanding on high-performance composite structures, and it will also appropriate for master- and undergraduate-level courses on design of composite structures especially for Civil Engineering Infrastructures.




MODELING OF ASPHALT CONCRETE


Book Description

An Expert Guide to Developing More-Durable and Cost-Effective Asphalt Pavements Written by distinguished experts from countries around the world, Modeling of Asphalt Concrete presents in-depth coverage of the current materials, methods, and models used for asphalt pavements. Included is state-of-the-art information on fundamental material properties and mechanisms affecting the performance of asphalt concrete, new rheological testing and analysis techniques, constitutive models, and performance prediction methodologies for asphalt concrete and asphalt pavements. Emphasis is placed on the modeling of asphalt mixes for specific geographic/climatic requirements. In light of America's crumbling infrastructure and our heavy usage of asphalt as a paving material, this timely reference is essential for the development of more-durable and cost-effective asphalt materials for both new construction and rehabilitation. Harness the Latest Breakthroughs in Asphalt Concrete Technology: • Asphalt Rheology • Constitutive Models • Stiffness Characterization • Models for Low-Temperature Cracking • Models for Fatigue Cracking and Moisture Damage • Models for Rutting and Aging