Modern Actuarial Theory and Practice


Book Description

In the years since the publication of the best-selling first edition, the incorporation of ideas and theories from the rapidly growing field of financial economics has precipitated considerable development of thinking in the actuarial profession. Modern Actuarial Theory and Practice, Second Edition integrates those changes and presents an up-to-date, comprehensive overview of UK and international actuarial theory, practice and modeling. It describes all of the traditional areas of actuarial activity, but in a manner that highlights the fundamental principles of actuarial theory and practice as well as their economic, financial, and statistical foundations.




Modern Actuarial Risk Theory


Book Description

Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and.




Modern Actuarial Risk Theory


Book Description

Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and much expanded edition emphasizes the implementation of these techniques through the use of R. This free but incredibly powerful software is rapidly developing into the de facto standard for statistical computation, not just in academic circles but also in practice. With R, one can do simulations, find maximum likelihood estimators, compute distributions by inverting transforms, and much more.




Financial and Actuarial Statistics


Book Description

Understand Up-to-Date Statistical Techniques for Financial and Actuarial ApplicationsSince the first edition was published, statistical techniques, such as reliability measurement, simulation, regression, and Markov chain modeling, have become more prominent in the financial and actuarial industries. Consequently, practitioners and students must ac




Modern Actuarial Theory and Practice, Second Edition


Book Description

In the years since the publication of the best-selling first edition, the incorporation of ideas and theories from the rapidly growing field of financial economics has precipitated considerable development of thinking in the actuarial profession. Modern Actuarial Theory and Practice, Second Edition integrates those changes and presents an up-to-date, comprehensive overview of UK and international actuarial theory, practice and modeling. It describes all of the traditional areas of actuarial activity, but in a manner that highlights the fundamental principles of actuarial theory and practice as well as their economic, financial, and statistical foundations.




An Introduction to Actuarial Studies


Book Description

1. Introduction -- 2. Valuation of financial transactions -- 3. Demography -- 4. Actuarial practice -- 5. Valuation of contingent payments.




R Programming for Actuarial Science


Book Description

R Programming for Actuarial Science Professional resource providing an introduction to R coding for actuarial and financial mathematics applications, with real-life examples R Programming for Actuarial Science provides a grounding in R programming applied to the mathematical and statistical methods that are of relevance for actuarial work. In R Programming for Actuarial Science, readers will find: Basic theory for each chapter to complement other actuarial textbooks which provide foundational theory in depth. Topics covered include compound interest, statistical inference, asset-liability matching, time series, loss distributions, contingencies, mortality models, and option pricing plus many more typically covered in university courses. More than 400 coding examples and exercises, most with solutions, to enable students to gain a better understanding of underlying mathematical and statistical principles. An overall basic to intermediate level of coverage in respect of numerous actuarial applications, and real-life examples included with every topic. Providing a highly useful combination of practical discussion and basic theory, R Programming for Actuarial Science is an essential reference for BSc/MSc students in actuarial science, trainee actuaries studying privately, and qualified actuaries with little programming experience, along with undergraduate students studying finance, business, and economics.




Statistical and Probabilistic Methods in Actuarial Science


Book Description

Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students' existing knowledge of probability and statistics by establishing a solid and thorough understanding of




Statistical Models


Book Description

This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.




Computational Actuarial Science with R


Book Description

A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/