Modern Chemistry


Book Description




The Development of Modern Chemistry


Book Description

From ancient Greek theory to the explosive discoveries of the 20th century, this authoritative history shows how major chemists, their discoveries, and political, economic, and social developments transformed chemistry into a modern science. 209 illustrations. 14 tables. Bibliographies. Indices. Appendices.




Holt McDougal Modern Chemistry


Book Description




A History of Modern Chemistry


Book Description

"This publication is a translation of the book entitles Gendai Kagakusi (A History of Modern Chemistry) published by Kyoto University Press in 2013.




Modern Quantum Chemistry


Book Description

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.




Cathedrals of Science


Book Description

In Cathedrals of Science, Patrick Coffey describes how chemistry got its modern footing-how thirteen brilliant men and one woman struggled with the laws of the universe and with each other. They wanted to discover how the world worked, but they also wanted credit for making those discoveries, and their personalities often affected how that credit was assigned. Gilbert Lewis, for example, could be reclusive and resentful, and his enmity with Walther Nernst may have cost him the Nobel Prize; Irving Langmuir, gregarious and charming, "rediscovered" Lewis's theory of the chemical bond and received much of the credit for it. Langmuir's personality smoothed his path to the Nobel Prize over Lewis. Coffey deals with moral and societal issues as well. These same scientists were the first to be seen by their countries as military assets. Fritz Haber, dubbed the "father of chemical warfare," pioneered the use of poison gas in World War I-vividly described-and Glenn Seaborg and Harold Urey were leaders in World War II's Manhattan Project; Urey and Linus Pauling worked for nuclear disarmament after the war. Science was not always fair, and many were excluded. The Nazis pushed Jewish scientists like Haber from their posts in the 1930s. Anti-Semitism was also a force in American chemistry, and few women were allowed in; Pauling, for example, used his influence to cut off the funding and block the publications of his rival, Dorothy Wrinch. Cathedrals of Science paints a colorful portrait of the building of modern chemistry from the late 19th to the mid-20th century.




Before Big Science


Book Description

Notable features of the book include an insightful analysis of the parallel trajectories of modern chemistry and physics and the work of scientists - such as John Dalton, Michael Faraday, Hermann von Helmholtz, Marie Curie, Ernest Rutherford, Dorothy Hodgkin, and Linus Pauling - who played prominent roles in the development of both disciplines.




Modern Analytical Chemistry


Book Description

This introductory text covers both traditional and contemporary topics relevant to analytical chemistry. Its flexible approach allows instructors to choose their favourite topics of discussion from additional coverage of subjects such as sampling, kinetic method, and quality assurance.




Modern Acetylene Chemistry


Book Description

This comprehensive handbook presents the full potential of modern acetylene chemistry, from organic synthesis through materials science to bioorganic chemistry. K. Houk, H. Hopf, P. Stang, K. M. Nicholas, N. Schore, M. Regitz, K. C. Nicolaou, R. Gleiter, L. Scott, R. Grubbs, H. Iwamura, J. Moore, and F. Diederich - internationally renowned authors introduce the reader, in a didactically skilful manner, to the state-of-the-art in alkyne chemistry. Emphasis is placed on presenting carefully selected and instructive examples as well as essential references to the original literature. Special benefits: Each chapter is rounded off by useful experimental procedures.




Modern Fluoroorganic Chemistry


Book Description

In this handbook, Peer Kirsch clearly shows that this exciting field is no longer an exotic area of research. Aimed primarily at synthetic chemists wanting to gain a deeper understanding of the fascinating implications of including the highly unusual element fluorine in organic compounds, the main part of the book presents a wide range of synthetic methodologies and the experimental procedures selected undeniably show that this can be done with standard laboratory equipment. To round off, the author looks at fluorous chemistry and the applications of organofluorine compounds in liquid crystals, polymers and more besides. This long-awaited book represents an indispensable source of high quality information for everyone working in the field.