Modern Dynamic Reliability Analysis for Multi-state Systems


Book Description

This book discusses recent developments in dynamic reliability in multi-state systems (MSS), addressing such important issues as reliability and availability analysis of aging MSS, the impact of initial conditions on MSS reliability and availability, changing importance of components over time in MSS with aging components, and the determination of age-replacement policies. It also describes modifications of traditional methods, such as Markov processes with rewards, as well as a modern mathematical method based on the extended universal generating function technique, the Lz-transform, presenting various successful applications and demonstrating their use in real-world problems. This book provides theoretical insights, information on practical applications, and real-world case studies that are of interest to engineers and industrial managers as well as researchers. It also serves as a textbook or supporting text for graduate and postgraduate courses in industrial, electrical, and mechanical engineering.




Multi-state System Reliability: Assessment, Optimization And Applications


Book Description

Most books on reliability theory are devoted to traditional binary reliability models allowing for only two possible states for a system and its components: perfect functionality and complete failure. However, many real-world systems are composed of multi-state components, which have different performance levels and several failure modes with various effects on the entire system performance (degradation). Such systems are called Multi-State Systems (MSS). The examples of MSS are power systems where the component performance is characterized by the generating capacity, computer systems where the component performance is characterized by the data processing speed, communication systems, etc.This book is the first to be devoted to Multi-State System (MSS) reliability analysis and optimization. It provides a historical overview of the field, presents basic concepts of MSS, defines MSS reliability measures, and systematically describes the tools for MSS reliability assessment and optimization. Basic methods for MSS reliability assessment, such as a Boolean methods extension, basic random process methods (both Markov and semi-Markov) and universal generating function models, are systematically studied. A universal genetic algorithm optimization technique and all details of its application are described. All the methods are illustrated by numerical examples. The book also contains many examples of application of reliability assessment and optimization methods to real engineering problems.The aim of this book is to give a comprehensive, up-to-date presentation of MSS reliability theory based on modern advances in this field and provide a theoretical summary and examples of engineering applications to a variety of technical problems. From this point of view the book bridges the gap between theoretical advances and practical reliability engineering.




Vehicle Electrification


Book Description

This book provides a comprehensive assessment and presentation of various feasible application of electric propulsion system, considering their weight, volume, reliability, and fault tolerance. The results of feasibility analysis can be used today or in the near future for development of electric propulsion system for the ships, planes, helicopters, and spacecrafts. To solve the above task, new theoretical approaches are applied, including combined random process methods, the Lz-transform technique for multistate systems, and statistical data processing.




Modern Statistical and Mathematical Methods in Reliability


Book Description

This volume contains extended versions of 28 carefully selected and reviewed papers presented at The Fourth International Conference on Mathematical Methods in Reliability in Santa Fe, New Mexico, June 21-25, 2004, the leading conference in reliability research. A broad overview of current research activities in reliability theory and its applications is provided with coverage on reliability modeling, network and system reliability, Bayesian methods, survival analysis, degradation and maintenance modeling, and software reliability. The contributors are all leading experts in the field and include the plenary session speakers, Tim Bedford, Thierry Duchesne, Henry Wynn, Vicki Bier, Edsel Pena, Michael Hamada, and Todd Graves.




Reliability Modeling in Industry 4.0


Book Description

Reliability Modeling with Industry 4.0 explores the emerging theoretical and practical developments in reliability engineering in highly digitized industries, including power, computer systems, railway systems, and robotics. Drawing on leading research from around the globe, as well as the latest in industry practice, this book provides cutting edge advice on how to integrate a fully digitized industry 4.0 system for enhanced reliability and reduced maintenance cost. Technologies such as big data, artificial intelligence, and the industrial internet of things are addressed in the context of reliability engineering, providing practical advice on applications. - Provides innovative reliability modeling tools related to the application of Industry 4.0 technologies - Includes case studies from industries such as rail, energy, and computer systems - Describes techniques for the successful digital transformation of industries for sophisticated reliability systems




Reliability and Maintainability Assessment of Industrial Systems


Book Description

This book covers advanced reliability and maintainability knowledge as applied to recent engineering problems. It highlights research in the fields of reliability measures of binary and complex engineering systems, cost analysis, simulations, optimizations, risk factors, and sensitivity analysis. The book scrutinizes various advanced tools and techniques, methodology, and concepts to solve the various engineering problems related to reliability and maintainability of the industrial system at minimum cost and maximum profit. It consists of 15 chapters and offers a platform to researchers, academicians, professionals and scientists to enhance their knowledge and understanding the concept of reliability in engineering.




Fault-Tolerant Traction Electric Drives


Book Description

This concise book focuses on the reliability of traction electrical drives. The first chapter presents the Lz-transform approach for the comparative analysis of the fault tolerance of multi-motor electrical drives with multi-phase traction motors. The second chapter then provides an estimate of the value of the operational availability and performance of a diesel–electric multi-drive propulsion system, while the third chapter introduces the concept of a more electric aircraft. Lastly, the fourth chapter analyzes the requirements for multi-phase permanent-magnet motors applicable in various aircraft systems.




Recent Advances in Multi-state Systems Reliability


Book Description

This book addresses a modern topic in reliability: multi-state and continuous-state system reliability, which has been intensively developed in recent years. It offers an up-to-date overview of the latest developments in reliability theory for multi-state systems, engineering applications to a variety of technical problems, and case studies that will be of interest to reliability engineers and industrial managers. It also covers corresponding theoretical issues, as well as case studies illustrating the applications of the corresponding theoretical advances. The book is divided into two parts: Modern Mathematical Methods for Multi-state System Reliability Analysis (Part 1), and Applications and Case Studies (Part 2), which examines real-world multi-state systems. It will greatly benefit scientists and researchers working in reliability, as well as practitioners and managers with an interest in reliability and performability analysis. It can also be used as a textbook or as a supporting text for postgraduate courses in Industrial Engineering, Electrical Engineering, Mechanical Engineering, Applied Mathematics, and Operations Research.




Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers


Book Description

Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers presents a comprehensive, up-to-date description of multi-state system (MSS) reliability as a natural extension of classical binary-state reliability. It presents all essential theoretical achievements in the field, but is also practically oriented. New theoretical issues are described, including: • combined Markov and semi-Markov processes methods, and universal generating function techniques; • statistical data processing for MSSs; • reliability analysis of aging MSSs; • methods for cost-reliability and cost-availability analysis of MSSs; and • main definitions and concepts of fuzzy MSS. Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers also discusses life cycle cost analysis and practical optimal decision making for real world MSSs. Numerous examples are included in each section in order to illustrate mathematical tools. Besides these examples, real world MSSs (such as power generating and transmission systems, air-conditioning systems, production systems, etc.) are considered as case studies. Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers also describes basic concepts of MSS, MSS reliability measures and tools for MSS reliability assessment and optimization. It is a self-contained study resource and does not require prior knowledge from its readers, making the book attractive for researchers as well as for practical engineers and industrial managers.




Applied Reliability Engineering and Risk Analysis


Book Description

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist