Modern Structural Analysis


Book Description

In the past, the main difficulties in structural analysis lay in the solution process, now model development is a fundamental issue. This work sets out the basic principles for structural analysis modelling and discusses basic processes for using modern software.




Modern Structural Analysis


Book Description

This companion to the previously published book [BO]Classical Structural Analysis[BX], also by the same author, focuses on advanced structural analysis using matrix methods for the element method of design calculations. With this method, the structural properties of each structural member (or element) taken together, of an entire structure, are used to calculate load behaviour and construction needs of a whole building or other structure. The matrix method is particularly suited to computer methods that must employ thousands of reiterate calculations. The book contains dozens of worked-out problems and design exercises, as well as an actual computer program at the end of the book for matrix method calculations.




Structural Modeling and Analysis


Book Description

A modern, unified introduction to structural modelling and analysis, with an emphasis on the application of energy methods.




Structural Analysis


Book Description

This volume provides a concise, historical review of the methods of structural analysis and design - from Galileo in the seventeenth century, to the present day. Through it, students in structural engineering and professional engineers will gain a deeper understanding of the theory behind the modern software packages they use daily in structural design. This book also offers the reader a lucid examination of the process of structural analysis and how it relates to modern design. The first three chapters cover questions about the strength of materials, and how to calculate local effects. An account is then given of the development of the equations of elastic flexure and buckling, followed by a separate chapter on masonry arches. Three chapters on the overall behaviour of elastic structures lead to a discussion of plastic behaviour, and a final chapter indicates that there are still problems needing solution.




Classical Structural Analysis


Book Description







Advanced Methods of Structural Analysis


Book Description

This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.




Modern Testing Techniques for Structural Systems


Book Description

The articles in this book describe new developments in the area of structural testing, particularly those based upon the principle of fusing numerical and experimental methods such as real-time dynamic substructuring and hardware-in-the loop testing. In addition to the hybrid methods, chapters on the latest develoments in more established techniques, such as shaking table testing, provide a completely up-to-date survey of structural testing methods. The book is characterized by a multidisciplinary nature of the work that integrates cutting-edge research from the fields of non-linear dynamics, automatic control, numerical analysis, system modelling and mechatronics.




Introduction to Structural Analysis


Book Description

This indispensable textbook is designed to bridge the gap between engineering practice and education. Acknowledging the fact that virtually all computer structural analysis programs are based on the matrix displacement method of analysis, the author begins with the displacement method and then introduces the force method of analysis. The book also shows how these methods are applied, particularly to trusses and to beams and rigid frames. Other topics covered include influence lines, non-prismatic members, composite structures, secondary stress analysis, and the limits of linear and static structural analysis.




Structural Analysis


Book Description

The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity and basic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams and plates. Particular attention is devoted to the analysis of thin-walled beams under bending shearing and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods. This teaching tool based on practical situations and thorough methodology should prove valuable to both lecturers and students of structural analysis in engineering worldwide. This is a textbook for teaching structural analysis of aerospace structures. It can be used for 3rd and 4th year students in aerospace engineering, as well as for 1st and 2nd year graduate students in aerospace and mechanical engineering.