Principles of Transistor Circuits


Book Description

For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand and as practical solutions to design problems, especially where appreciable power output or high voltage is required. New circuit techniques covered for the first time in this edition include current-dumping amplifiers, bridge output stages, dielectric resonator oscillators, crowbar protection circuits, thyristor field timebases, low-noise blocks and SHF amplifiers in satellite receivers, video clamps, picture enhancement circuits, motor drive circuits in video recorders and camcorders, and UHF modulators. The plan of the book remains the same: semiconductor physics is introduced, followed by details of the design of transistors, amplifiers, receivers, oscillators and generators. Appendices provide information on transistor manufacture and parameters, and a new appendix on transistor letter symbols has been included.




Modern Transistor Circuits


Book Description

The 101 articles reprinted in this book appeared in Electronics magazine during the years 1956,1957 and 1958.




Understanding Modern Transistors and Diodes


Book Description

Written in a concise, easy-to-read style, this text for senior undergraduate and graduate courses covers all key topics thoroughly. It is also a useful self-study guide for practising engineers who need a complete, up-to-date review of the subject. Key features: • Rigorous theoretical treatment combined with practical detail • A theoretical framework built up systematically from the Schrödinger Wave Equation and the Boltzmann Transport Equation • Covers MOSFETS, HBTs and HJFETS • Uses the PSP model for MOSFETS • Rigorous treatment of device capacitance • Describes the operation of modern, high-performance transistors and diodes • Evaluates the suitability of various transistor types and diodes for specific modern applications • Covers solar cells and LEDs and their potential impact on energy generation and reduction • Includes a chapter on nanotransistors to prepare students and professionals for the future • Provides results of detailed numerical simulations to compare with analytical solutions • End-of-chapter exercises • Online lecture slides for undergraduate and graduate courses




Modern Semiconductor Devices for Integrated Circuits


Book Description

Modern Semiconductor Devices for Integrated Circuits, First Edition introduces readers to the world of modern semiconductor devices with an emphasis on integrated circuit applications. KEY TOPICS Electrons and Holes in Semiconductors; Motion and Recombination of Electrons and Holes; Device Fabrication Technology; PN and Metal Semiconductor Junctions; MOS Capacitor; MOS Transistor; MOSFETs in ICs Scaling, Leakage, and Other Topics; Bipolar Transistor. MARKET Written by an experienced teacher, researcher, and expert in industry practices, this succinct and forward-looking text is appropriate for anyone interested in semiconductor devices for integrated curcuits, and serves as a suitable reference text for practicing engineers. "




Digital Integrated Circuit Design


Book Description

This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.




Designing Bipolar Transistor Radio Frequency Integrated Circuits


Book Description

If you're looking for an in-depth and up-to-date understanding bipolar transistor RFIC design, this practical resource is a smart choice. Unlike most books on the market that focus on GaAs MESFET or silicon CMOS process technology, this unique volume is dedicated exclusively to RFIC designs based on bipolar technology. Until now, critical GaAs HBT and SiGe HBT process technologies have been largely neglected in reference books. This book fills this gap, offering you a detailed treatment of this increasingly important topic. You discover a wide range of circuit topologies that are optimized for maximum performance with bipolar devices. From discussions of key applications (Bluetooth, UWB, GPS, WiMax) and architectures… to in-depth coverage of fabrication technologies and amplifier design… to a look at performance tradeoffs and production costs, this book arms you with complete design know-how for your challenging work in the field.




Compact Transistor Modelling for Circuit Design


Book Description

During the first decade following the invention of the transistor, progress in semiconductor device technology advanced rapidly due to an effective synergy of technological discoveries and physical understanding. Through physical reasoning, a feeling for the right assumption and the correct interpretation of experimental findings, a small group of pioneers conceived the major analytic design equations, which are currently to be found in numerous textbooks. Naturally with the growth of specific applications, the description of some characteristic properties became more complicated. For instance, in inte grated circuits this was due in part to the use of a wider bias range, the addition of inherent parasitic elements and the occurrence of multi dimensional effects in smaller devices. Since powerful computing aids became available at the same time, complicated situations in complex configurations could be analyzed by useful numerical techniques. Despite the resulting progress in device optimization, the above approach fails to provide a required compact set of device design and process control rules and a compact circuit model for the analysis of large-scale electronic designs. This book therefore takes up the original thread to some extent. Taking into account new physical effects and introducing useful but correct simplifying assumptions, the previous concepts of analytic device models have been extended to describe the characteristics of modern integrated circuit devices. This has been made possible by making extensive use of exact numerical results to gain insight into complicated situations of transistor operation.




Compact Models for Integrated Circuit Design


Book Description

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.




Principles of Transistor Circuits


Book Description




Charge-Based MOS Transistor Modeling


Book Description

Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.