Modern Trends in Magnetostriction Study and Application


Book Description

An understanding of magnetostriction is important for a range of technologically and scientifically important materials. The book covers bulk and thin film magnetostrictive materials, superconductors and oxides. The role of magnetostriction in determining or influencing the physical properties is discussed in depth and wide-ranging reference lists are provided for further study. Contributors have provided both tutorial material and discussions of leading-edge science. Readership: An invaluable reference for all condensed matter physicists, material scientists and technologists for whom bulk or thin film magnetic materials or superconductors are central to their interests.




Modern Trends in Composite Laminates Mechanics


Book Description

The aim of the book is to give a clear picture of some new modern trends in composite mechanics and to give a presentation of the current state-of-the-art of the theory and application of composite laminates. The book addresses the basics as well as recent developments in the theory of laminates and their effective properties, the problem of testing and identification of properties, strength, damage, and failure of composite laminates, lightweight construction principles, optimization techniques, the generation of smart structures, and a number of special technical aspects (e.g. stress localization), their modelling and analysis. The intention of the book is to provide deeper understanding, to give mathematical and algorithmic techniques for analysis, simulation and optimization and to link various aspects of composite mechanics as necessary to exploit the full potential that is possible for composite structures.




New Developments in Nanotechnology Research


Book Description

Nanotechnology is a "catch-all" description of activities at the level of atoms and molecules that have applications in the real world. A nanometer is a billionth of a metre, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book presents the latest research in this frontier field.




Magnetic Nano- and Microwires


Book Description

Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, alongside domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. - Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires - Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications - Combines the expertise of specialists from around the globe to give a broad overview of current and future trends




The Magnetocaloric Effect and its Applications


Book Description

The magnetocaloric effect describes the change in temperature of a magnetic material under adiabatic conditions through the application or removal of an external magnetic field. This effect is particularly pronounced at temperatures and fields corresponding to magnetic phase transitions, and it is a powerful and widely used tool for investigating t




Solid-State Physics


Book Description

While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.




Solid-State Physics


Book Description

While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.




Solution Precursor Plasma Spray System


Book Description

This Brief describes the influence of the different organic chelating agents on the topography, physical properties and phases of SPPS-deposited spinel ferrite splats. The author describes how by using the SPPS process, the coating is produced directly from a solution precursor and how all physical and chemical reactions such as evaporation, decomposition, crystallization and coating formation occur in a single step. The author details not only the innovative approach to liquid feeding, but also focuses on its effects on the spinel ferrite system. The results of experimentation as well as detailed explanations of the experiments are included.




Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides


Book Description

The interrelation among composition, microstructure, and properties of stoichiometric and nonstoichiometric compounds is a major field of research for both scientific and technological reasons. As such, this book focuses on metal oxides, which present a large diversity of electrical, magnetic, optical, optoelectronic, thermal, electrochemical, and catalytic properties, making them suitable for a wide range of applications. By bringing together scientific contributions with special emphasis on the interrelations between materials chemistry, processing, microstructures, and properties of stoichiometric and nonstoichiometric metal oxides, this book highlights the importance of tightly integrating high-throughput experiments (including both synthesis and characterization) and efficient and robust theory for the design of advanced materials.







Recent Books