Skeletal Muscle Circulation


Book Description

The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References







Molecular and Cellular Aspects of Muscle Contraction


Book Description

This volume presents the proceedings of a muscle symposium, which was held as the Fourth Fujihara seminar on October 28 - November 1, 2002, at Hakone, Japan. This volume covers all fields of muscle biology, from molecules to humans. This book provides information about recent progress of muscle research as well as the problems that remain to be investigated. This volume will stimulate muscle investigators to design and perform novel experiments to clarify the mysteries in muscle contraction.




Muscle Homeostasis and Regeneration


Book Description

The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.




Molecular Mechanisms in Striated Muscle


Book Description

Striated muscle is the most common muscle type in the vertebrate body. This book describes in molecular terms the components and intracellular events responsible for the contraction and relaxation of striated muscle. The topic is introduced with a discussion of motile systems occurring throughout the biological world and their relation to the highly specialised contractile system of muscle. Professor Perry then goes on to discuss the mechanochemical process and the regulatory roles of calcium, I filament proteins and phosphorylation. The book ends with an examination of the role of dystrophin and its implications in Duchenne muscular dystrophy, the most common form of muscle disease. Molecular Mechanisms in Striated Muscle will provide an important source of information and current theory for researchers and postgraduate students in muscle physiology, biochemistry and medicine.




Skeletal Muscle Mechanics


Book Description

Dieses Teilgebiet der Biomechanik ist für Sportwissenschaftler und Physiologen von großer Bedeutung! Die umfassende, aktuelle Abhandlung der Skelettmuskelmechanik beschäftigt sich mit drei Themenkreisen: den Mechanismen der Skelettmuskelkontraktion, der Muskelfunktion in vivo und theoretischen Modellen der Muskelfunktion. Auch ein knapper historischer Abriß und ein Ausblick auf noch offene Fragen fehlen nicht. (08/00)




Molecular Control Mechanisms in Striated Muscle Contraction


Book Description

Molecular Control Mechanisms in Striated Muscle Contraction addresses the molecular mechanisms by which contraction of heart and skeletal muscles is regulated, as well as the modulation of these mechanisms by important (patho)physiological variables such as ionic composition of the myoplasm and phosphorylations of contractile and regulatory proteins. For the novice, this volume includes chapters that summarize current understanding of excitation-contraction coupling in striated muscles, as well as the compositions and structures myofibrillar thick and thin filaments. For the expert, this volume presents detailed pictures of current understanding of the mechanisms underlying the CA2+ regulation of contraction in heart and skeletal muscles and discusses important directions for future investigation.




Muscle 2-Volume Set


Book Description

Muscle: Fundamental Biology and Mechanisms of Disease will be the first reference covering cardiac, skeletal, and smooth muscle in fundamental, basic science, translational biology, disease mechanism, and therapeutics. Currently there are no publications covering the science behind the medicine, as the majority of books are 90% clinical and 10% science. Muscle: Fundamental Biology and Mechanisms of Disease will discuss myocyte biology, also known as muscle cell biology, providing information about the science behind clinical work and therapeutics with a 90% science and 10% clinical focus. A needed resource for researchers, clinical professionals, postdocs, and graduate students, this publication will further discuss basic biology development and physiology, how processes go awry in disease states, and how the defective pathways are targeted for therapy. This book will assist both the new and experienced clinician's and researcher's need for science translation of background research into clinical applications, bridging the gap between research and clinical knowledge.




Disorders of Voluntary Muscle


Book Description

Rewritten and redesigned, this remains the one essential text on the diseases of skeletal muscle.




Mechanism of Muscular Contraction


Book Description

This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.