Molecular Mechanisms of Embryonic Wound Healing


Book Description

Embryos have a striking ability to heal wounds rapidly and without scarring. Embryonic wound repair is a conserved process, driven by polarization of cell-cell junctions and the actomyosin cytoskeleton in the cells around the wound to coordinate cell movements. However, the mechanisms of junctional and cytoskeletal polarization during embryonic wound repair are unclear. To investigate the upstream signals that mediate cell polarization around wounds, I used quantitative in vivo microscopy in Drosophila embryos to show that the endocytic machinery localizes to the wound margin, in a process dependent on calcium and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair, E- cadherin trafficking, and actomyosin polarization. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Together, these results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. I next identified reactive oxygen species (ROS) as a critical signal that promotes polarized junctional rearrangements around wounds in Drosophila and zebrafish embryos. Blocking ROS production significantly inhibited wound healing, and severely impaired junctional trafficking and actomyosin accumulation around the wound. ROS can post-translationally modify proteins by oxidizing electron-rich cysteine residues. The Drosophila ortholog of Src kinase, Src42A, contains several putative redox-sensitive cysteines, and has been implicated in E-cadherin trafficking during morphogenesis. I found that embryos mutant for Src42A[C471], a conserved cysteine that is oxidized in zebrafish leukocytes upon wounding, displayed impaired wound healing and myosin polarization, indicating that oxidation of Src42A[C471] is required for efficient tissue repair. Together, my results detail mechanisms by which polarization of junctions and the cytoskeleton are regulated during the coordinated cell movements that drive wound healing in vivo.







Fetal Wound Healing


Book Description

The ability of foetal tissue to heal without scarring is now well documented, but the potentially far-reaching implications of this process for the practice of surgery and the management of healing are just beginning to be understood. This book provides up-to-date information on the subject.




Textbook on Scar Management


Book Description

This text book is open access under a CC BY 4.0 license. Written by a group of international experts in the field and the result of over ten years of collaboration, it allows students and readers to gain to gain a detailed understanding of scar and wound treatment – a topic still dispersed among various disciplines. The content is divided into three parts for easy reference. The first part focuses on the fundamentals of scar management, including assessment and evaluation procedures, classification, tools for accurate measurement of all scar-related elements (volume density, color, vascularization), descriptions of the different evaluation scales. It also features chapters on the best practices in electronic-file storage for clinical reevaluation and telemedicine procedures for safe remote evaluation. The second section offers a comprehensive review of treatment and evidence-based technologies, presenting a consensus of the various available guidelines (silicone, surgery, chemical injections, mechanical tools for scar stabilization, lasers). The third part evaluates the full range of emerging technologies offered to physicians as alternative or complementary solutions for wound healing (mechanical, chemical, anti-proliferation). Textbook on Scar Management will appeal to trainees, fellows, residents and physicians dealing with scar management in plastic surgery, dermatology, surgery and oncology, as well as to nurses and general practitioners




An Investigation on the Role and Regulation of Signal Transduction Pathways During Embryonic Wound Healing


Book Description

For years, it has been appreciated that embryos have remarkable abilities to heal wounds efficiently and perfectly, without scar formation. However, the molecular mechanisms underlying embryonic wound healing, especially how they coordinate and function in an efficient way, remains poorly understood. The primary aim of my PhD thesis was to use Xenopus as a model system to investigate the molecular and cellular mechanisms which are responsible for the regulation and coordination of embryonic wound healing. More specifically, my thesis includes the study of three signalling pathways during embryonic wound healing; namely the Erk MAPK pathway, PI3K pathway and inositol phosphate pathways. Erk and PI3K signalling are sequentially activated post injury, during separate phases of wound closure. The initial activation of Erk signalling governs the initial stage of wound closure, by mediating myosin-2 phosphorylation and actomyosin contraction through Rho activity. PI3K signalling increases in the late stage of wound closure, promotes leading edge migration and zippering via Rac and Cdc42 activity (Manuscript #1). From the findings of this study, I proposed a novel model, which suggests a cooperation of these two signalling pathways in orchestrating distinct cytoskeletal events during in tissue morphogenesis. In the second part of my thesis, I studied the role of inositol phosphate signalling during wound healing. In particular, I studied the role of the enzyme Itpkb and its product InsP4, in promoting rapid wound healing (Manuscript #2). Itpkb colocalizes with F-actin cable and promotes its formation at the wound edge in both single cell and multicellular wounds, enhancing the activity of three Rho GTPases Rac, Cdc42 and Rho at the same time. In addition, itpkb is required for calcium propagation from the wound edge to distant cells, suggesting a role in transmitting the wound signal across the tissue, resulting in the coordination of healing in multicellular wounds. Together, these PhD work provided more insights into the in vivo regulation of intracellular and intercellular signals in coordinating cell behavior in tissue movement during embryonic wound healing.




Integrative Mechanobiology


Book Description

The first of its kind, this comprehensive resource integrates cellular mechanobiology with micro-nano techniques to provide unrivalled in-depth coverage of the field, including state-of-the-art methods, recent advances, and biological discoveries. Structured in two parts, the first part offers detailed analysis of innovative micro-nano techniques including FRET imaging, electron cryo-microscopy, micropost arrays, nanotopography devices, laser ablation, and computational image analysis. The second part of the book provides valuable insights into the most recent technological advances and discoveries in areas such as stem cell, heart, bone, brain, tumor, and fibroblast mechanobiology. Written by a team of leading experts and well-recognised researchers, this is an essential resource for students and researchers in biomedical engineering.







Indwelling Neural Implants


Book Description

Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel







Innovations in Molecular Mechanisms and Tissue Engineering


Book Description

This book marries stem cell biology, tissue engineering, and regenerative biology into a single, interdisciplinary volume. The chapters also explore embryonic stem cells, induced pluripotent stem cells, cardiovascular regeneration, skeletal development, inflammation, polymeric biomaterials, neural injury, cartilage regeneration, regeneration in ambystoma, models for regeneration using salamander and zebrafish, and more. The volume also discusses recent advances and their potential in developing future therapies. Innovations in Molecular Mechanisms and Tissue Engineering combines perspectives from the biomedical, bioengineering, and medical fields to present a cutting-edge, multifaceted picture of the tissue engineering and regenerative medicine fields. This installment of Springer’s Stem Cell Biology and Regenerative Medicine series is ideal for scientists, clinicians, and researchers in the fields of stem cell biology, regenerative medicine, biomedical engineering, and tissue engineering.