Transduction Channels in Sensory Cells


Book Description

This is the first book to provide a molecular level explanation of how the senses work, linking molecular biology with sensory physiology to deduce the molecular mechanism of a key step in sensory signal generation. The editors have assembled expert authors from all fields of sensory physiology for an authoritative overview of the mechanisms of sensory signal transduction in both animals and plants. They systematically cover phototransduction, chemosensory transduction, mechanotransduction, temperature and pain perception, as well as specialized receptors for electrical and magnetic signals. Required reading for biologists, physiologists and medical researchers with an interest in sensory physiology.







Molecular Mechanisms Regulating Neural Circuit Assembly in Caenorhabditis Elegans


Book Description

Nervous system function, from sensory perception to motor control, requires precisely neural circuit assembly. Therefore, elucidating the molecular and cellular mechanisms which establish and maintain functional neural circuit is of fundamental importance to our understanding of the brain. We develop a novel repressible binary expression system in C. elegans being able to manipulate neural circuit more precisely. We demonstrate that the unfolded protein response (UPR) regulates dendrite morphogenesis of a polymodal nociceptive neuron PVD. Finally, we propose the sex-dimorphic Dosage Compensation Complex (DCC) may regulate synaptic specificity in the pheromone sensory circuit. These results suggest that a diverse assemblage of molecular and cellular mechanisms are necessary for the precise and appropriate assembly of neural circuits. These mechanisms can be elucidated using simple nematode C. elegans in a reductionist manner.




Molecular Mechanisms of Touch Sensory Transduction in C. Elegans


Book Description

Mechanical signaling plays an important role in cell shape and volume regulation, touch sensation, hearing, proprioception, gravitaxis, and turgor regulation. C. elegans provides a powerful model for elaborating mechanisms of eukaryotic mechanotransduction. Genetic screening identified candidate touch-transducing channels (DEG/ENaCs and TRP channels). In C. elegans, six touch neurons (ALML/R, AVM, PLML/R, PVM) are located in specific places in the body, optimized to detect forces delivered to those parts of the body. MEC-4 is expressed in six touch sensory neurons. MEC-10, on the other hand, is expressed in these six neurons, as well as in two extra pairs of neurons, PVDL/R and FLPL/R. Laser ablation studies showed that the six touch neurons respond to gentle and harsh body touch and suggested that FLP and PVD neurons are responsible for the harsh touch response. MEC-10 encodes a component of the core gentle touch sensory channel that is expressed in both gentle touch and harsh touch neurons. I studied the first mec-10 null mutant and showed that MEC-10 is required for both gentle and harsh touch sensation in C. elegans since the mec-10 null mutant is gentle touch insensitive and reduces harsh touch responses. We also used the intracellular calcium reporter cameleon to show that responses of gentle touch neurons and PVD/FLP to touch stimuli decreased in mec-10 null mutant. However, mec-10 null mutation has no significant impact on proprioception and mec-10(d)-induced neurodegeneration. I also made mec-4 and mec-10 hybrid proteins by switching their extracellular and transmembrane domains and checked their function by rescuing assay. Failure to complement the touch sensation function suggested that specific sequences are required for the normal functions of mec-4 and mec-10; smaller perturbation may be needed to recover protein function in chimeras. Based on the solved MEC-4 N-terminal NMR structure prediction, I introduced point mutations into this domain and studied biological consequences in genetic rescue assays and by monitoring dominant negative effects normally seen when the N-terminal is expressed alone. I found that generally, the amino acid substitutions predicted to perturb structure disrupt channel function as predicted. The disrupted mutant strains can also exhibit a significantly decreased density of immuno-stained channel puncta distributed along touch neuron processes. However, the rescue of channel function and the dominant negative effects are not well correlated. Overall, my data advance understanding of MEC-10 and MEC-4 function on mechanosensation.




The Neurobiology of Olfaction


Book Description

Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely




TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades


Book Description

Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st




E. coli in Motion


Book Description

Escherichia coli, commonly referred to as E. coli, has been the organism of choice for molecular genetics for decades. Its machinery and mobile behavior is one of the most fascinating topics for cell scientists. Scientists and engineers, not trained in microbiology, and who would like to learn more about living machines, can see it as a unique example. This cross-disciplinary monograph covers more than thirty years of research and is accessible to graduate students and scientists alike.







Neuropeptide Systems as Targets for Parasite and Pest Control


Book Description

The need to continually discover new agents for the control or treatment of invertebrate pests and pathogens is undeniable. Agriculture, both animal and plant, succeeds only to the extent that arthropod and helminth consumers, vectors and pathogens can be kept at bay. Humans and their companion animals are also plagued by invertebrate parasites. The deployment of chemical agents for these purposes inevitably elicits the selection of resistant populations of the targets of control, necessitating a regular introduction of new kinds of molecules. Experience in other areas of chemotherapy has shown that a thorough understanding of the biology of disease is an essential platform upon which to build a discovery program. Unfortunately, investment of research resources into understanding the basic physiology of invertebrates as a strategy to illuminate new molecular targets for pesticide and parasiticide discovery has been scarce, and the pace of introduction of new molecules for these indications has been slowed as a result. An exciting and so far unexploited area to explore in this regard is invertebrate neuropeptide physiology. This book was assembled to focus attention on this promising field by compiling a comprehensive review of recent research on neuropeptides in arthropods and helminths, with contributions from many of the leading laboratories working on these systems.