A Time for Metabolism and Hormones


Book Description

Recent years have seen spectacular advances in the field of circadian biology. These have attracted the interest of researchers in many fields, including endocrinology, neurosciences, cancer, and behavior. By integrating a circadian view within the fields of endocrinology and metabolism, researchers will be able to reveal many, yet-unsuspected aspects of how organisms cope with changes in the environment and subsequent control of homeostasis. This field is opening new avenues in our understanding of metabolism and endocrinology. A panel of the most distinguished investigators in the field gathered together to discuss the present state and the future of the field. The editors trust that this volume will be of use to those colleagues who will be picking up the challenge to unravel how the circadian clock can be targeted for the future development of specific pharmacological strategies toward a number of pathologies.




mRNA Metabolism & Post-Transcriptional Gene Regulation


Book Description

mRNA METABOLISM & POST-TRANSCRIPTIONAL GENE REGULATION Edited by Joe B. Harford and David R. Morris Gene expression is a process that begins with the transcription ofDNA to an RNA messenger (mRNA), which is then translated into aprotein. Historically, attention has been focused on the regulationof RNA synthesis (transcription); however, there is a growingrecognition of and appreciation for the importance of the manyregulatory mechanisms that take place after RNA synthesis has beencompleted. mRNA Metabolism and Post-Transcriptional Gene Regulation is thefirst comprehensive overview of the various modes of generegulation that exist post-transcriptionally. Collecting studies bysome of the top researchers in the field, this volume provides bothan up-to-date review of the complex "life" of an mRNA molecule andan introduction to current work on the diversity of mechanisms ofpost-transcriptional reactions. Topics covered include: * RNA structure * Mammalian RNA editing * RNA export from the nucleus * The fundamentals of translation initiation * Control of mRNA decay in plants * mRNA metabolism and cancer * Control of mRNA stability during herpes simplex virus infection * Regulation of mRNA expression in HIV-1 and other complexretroviruses * Nucleases * RNA localization A timely contribution to the understanding of genetic regulatorymechanisms, mRNA Metabolism and Post-Transcriptional GeneRegulation provides a basis from which potential therapeuticstrategies may be developed. This book will be of vital interest tocell and molecular biologists at all levels, from graduate studentsto senior investigators, clinical researchers, and professionals inthe pharmaceutical and biotechnology industries.




Biology for AP ® Courses


Book Description

Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.







Advances in Animal Genomics


Book Description

Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion







Control of Messenger RNA Stability


Book Description

This is the first comprehensive review of mRNA stability and its implications for regulation of gene expression. Written by experts in the field, Control of Messenger RNA Stability serves both as a reference for specialists in regulation of mRNA stability and as a general introduction for a broader community of scientists. Provides perspectives from both prokaryotic and eukaryotic systems Offers a timely, comprehensive review of mRNA degradation, its regulation, and its significance in the control of gene expression Discusses the mechanisms, RNA structural determinants, and cellular factors that control mRNA degradation Evaluates experimental procedures for studying mRNA degradation




Encyclopedia of Bioinformatics and Computational Biology


Book Description

Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases




Genetics and Biotechnology


Book Description

Mycology, the study of fungi, originated as a subdiscipline of botany and was a descriptive discipline, largely neglected as an experimental science until the early years of this century. A seminal paper by Blakeslee in 1904 provided evidence for self incompatibility, termed "heterothallism", and stimulated interest in studies related to the control of sexual reproduction in fungi by mating-type specificities. Soon to follow was the demonstration that sexually reproducing fungi exhibit Mendelian inheritance and that it was possible to conduct formal genetic analysis with fungi. The names Burgeff, Kniep and Lindegren are all associated with this early period of fungal genetics research. These studies and the discovery of penicillin by Fleming, who shared a Nobel Prize in 1945, provided further impetus for experimental research with fungi. Thus began a period of interest in mutation induction and analysis of mutants for bio chemical traits. Such fundamental research, conducted largely with Neurospora crassa, led to the one gene: one enzyme hypothesis and to a second Nobel Prize for fungal research awarded to Beadle and Tatum in 1958. Fundamental research in biochemical genetics was extended to other fungi, especially to Saccharomyces cere visiae, and by the mid-1960s fungal systems were much favored for studies in eukaryotic molecular biology and were soon able to compete with bacterial systems in the molecular arena.




Untranslated Gene Regions and Other Non-coding Elements


Book Description

There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as “junk DNA”, it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5’ and 3’ untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This book discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.​