Mucosal Delivery of Biopharmaceuticals


Book Description

Biopharmaceutical medicines, the newest class of therapeutics, are quite heterogeneous and include a range of molecules such as proteins, peptides, vaccines and nucleic acids, with use in virtually all therapeutic fields (e.g. cancer and infectious diseases, vaccination, metabolic dysfunctions) and diagnostics. This edited book gives a concise and up-to-date overview of the biological features justifying the use of different human mucosa as delivery routes for biopharmaceuticals, the technological strategies that have been followed so far regarding the optimization of mucosal potentialities as well as the challenges that arise with the advent of new biopharmaceutical drugs and alternative means of administration. Following a brief introduction, the first section addresses general aspects of the biology of mucosal tissues and their unique aspects toward beneficial or deleterious interaction with biopharmaceuticals and their delivery systems. The second part reviews the different delivery strategies that have recently been investigated for different mucosal sites. The third section describes the development and clinical applications of drug delivery systems and products enclosing biopharmaceuticals for mucosal delivery, with a focus on the most successful case studies of recent years. The last section briefly centers on relevant aspects of the regulatory, toxicological and market issues of mucosal delivery of biopharmaceuticals.​ Scientists and researchers in the fields of drug delivery, material science, biomedical science and bioengineering as well as professionals, regulators and policy makers in the pharmaceutical, biotechnology and healthcare industries will find in this book an important compendium of fundamental concepts and practical tools for their daily research and activities.




Chitosan-Based Systems for Biopharmaceuticals


Book Description

Chitosan is a linear polysaccharide commercially produced by the deacetylation of chitin. It is non-toxic, biodegradable, biocompatible, and acts as a bioadhesive with otherwise unstable biomolecules - making it a valuable component in the formulation of biopharmaceutical drugs. Chitosan-Based Systems for Biopharmaceuticals provides an extensive overview of the application of chitosan and its derivatives in the development and optimisation of biopharmaceuticals. The book is divided in four different parts. Part I discusses general aspects of chitosan and its derivatives, with particular emphasis on issues related to the development of biopharmaceutical chitosan-based systems. Part II deals with the use of chitosan and derivatives in the formulation and delivery of biopharmaceuticals, and focuses on the synergistic effects between chitosan and this particular subset of pharmaceuticals. Part III discusses specific applications of chitosan and its derivatives for biopharmaceutical use. Finally, Part IV presents diverse viewpoints on different issues such as regulatory, manufacturing and toxicological requirements of chitosan and its derivatives related to the development of biopharmaceutical products, as well as their patent status, and clinical application and potential. Topics covered include: chemical and technological advances in chitins and chitosans useful for the formulation of biopharmaceuticals physical properties of chitosan and derivatives in sol and gel states absorption promotion properties of chitosan and derivatives biocompatibility and biodegradation of chitosan and derivatives biological and pharmacological activity of chitosan and derivatives biological, chemical and physical compatibility of chitosan and biopharmaceuticals approaches for functional modification or crosslinking of chitosan use of chitosan and derivatives in conventional biopharmaceutical dosage forms manufacture techniques of chitosan-based microparticles and nanoparticles for biopharmaceuticals chitosan and derivatives for biopharmaceutical use: mucoadhesive properties chitosan-based systems for mucosal delivery of biopharmaceuticals chitosan-based delivery systems for mucosal vaccination chitosan-based nanoparticulates for oral delivery of biopharmaceuticals chitosan-based systems for ocular delivery of biopharmaceuticals chemical modification of chitosan for delivery of DNA and siRNA target-specific chitosan-based nanoparticle systems for nucleic acid delivery functional PEGylated chitosan systems for biopharmaceuticals stimuli-sensitive chitosan-based systems for biopharmaceuticals chitosan copolymers for biopharmaceuticals application of chitosan for anti-cancer biopharmaceutical delivery chitosan-based biopharmaceuticals scaffolds in tissue engineering and regenerative medicine wound healing properties of chitosan and its use in wound dressing biopharmaceuticals toxicological properties of chitosan and derivatives for biopharmaceutical applications regulatory status of chitosan and derivatives patentability and intellectual property issues quality control and good manufacturing practice preclinical and clinical use of chitosan and derivatives for biopharmaceuticals Chitosan-Based Systems for Biopharmaceuticals is an important compendium of fundamental concepts, practical tools and applications of chitosan-based biopharmaceuticals for researchers in academia and industry working in drug formulation and delivery, biopharmaceuticals, medicinal chemistry, pharmacy, bioengineering and new materials development.




Bioadhesives in Drug Delivery


Book Description

This important and unique book comprises 12 chapters divided into three parts examining the fundamental aspects, bioadhesive formulations, and drug delivery applications. Understanding the phenomenon of bioadhesion i.e. its theories or mechanism(s) are of critical importance in developing optimum bioadhesive polymers (used in bioadhesives). Such bioadhesive polymers are the key for exhibiting the process of bioadhesion, controlled/sustained release of drugs, and drug targeting. The use of bioadhesives restricts the delivery system to the site of interest and thus offers a useful and efficient technique for targeting a drug to the desired location for a prolonged duration. This book addresses the various relevant aspects of bioadhesives in drug delivery in an easily accessible and unified manner. The book containing 12 chapters written by eminent researchers from many parts of the globe is divided into three parts: Part 1: Fundamental Aspects; Part 2: Bioadhesive Formulations; Part 3: Drug Delivery Applications. The topics covered include: Theories and mechanisms of bioadhesion; bioadhesive polymers for drug delivery applications; methods for characterization of bioadhesiveness of drug delivery systems; bioadhesive films and drug delivery applications; bioadhesive nanoparticles; bioadhesive hydrogels and applications; ocular biodhesive drug delivery systems; buccal bioadhesive drug delivery systems; gastrointestinal bioadhesive drug delivery systems; nasal bioadhesive drug delivery systems; vaginal drug delivery systems; pulmonary bioadhesive drug delivery systems.




Peptide and Protein Delivery


Book Description

The growing area of peptide and protein therapeutics research is of paramount importance to medical application and advancement. A needed reference for entry level researchers and researchers working in interdisciplinary / collaborative projects, Peptide and Protein Delivery addresses the current and emerging routes for delivery of therapeutics. Covering cerebral delivery, pulmonary delivery, transdermal delivery, intestinal delivery, ocular delivery, parenteral delivery, and nasal delivery, this resource offers an overview of the main routes in therapeutics. Researchers across biochemistry, pharmaceutical, molecular biology, cell biology, immunology, chemistry and biotechnology fields will find this publication invaluable for peptide and protein laboratory research. - Discusses the most recent data, ideas and concepts - Presents case studies and an industrial perspective - Details information from the molecular level to bioprocessing - Thought provoking, for the novice to the specialist - Timely, for today's biopharmaceuticals market




Chitosan-Based Systems for Biopharmaceuticals


Book Description

Chitosan is a linear polysaccharide commercially produced by the deacetylation of chitin. It is non-toxic, biodegradable, biocompatible, and acts as a bioadhesive with otherwise unstable biomolecules - making it a valuable component in the formulation of biopharmaceutical drugs. Chitosan-Based Systems for Biopharmaceuticals provides an extensive overview of the application of chitosan and its derivatives in the development and optimisation of biopharmaceuticals. The book is divided in four different parts. Part I discusses general aspects of chitosan and its derivatives, with particular emphasis on issues related to the development of biopharmaceutical chitosan-based systems. Part II deals with the use of chitosan and derivatives in the formulation and delivery of biopharmaceuticals, and focuses on the synergistic effects between chitosan and this particular subset of pharmaceuticals. Part III discusses specific applications of chitosan and its derivatives for biopharmaceutical use. Finally, Part IV presents diverse viewpoints on different issues such as regulatory, manufacturing and toxicological requirements of chitosan and its derivatives related to the development of biopharmaceutical products, as well as their patent status, and clinical application and potential. Topics covered include: chemical and technological advances in chitins and chitosans useful for the formulation of biopharmaceuticals physical properties of chitosan and derivatives in sol and gel states absorption promotion properties of chitosan and derivatives biocompatibility and biodegradation of chitosan and derivatives biological and pharmacological activity of chitosan and derivatives biological, chemical and physical compatibility of chitosan and biopharmaceuticals approaches for functional modification or crosslinking of chitosan use of chitosan and derivatives in conventional biopharmaceutical dosage forms manufacture techniques of chitosan-based microparticles and nanoparticles for biopharmaceuticals chitosan and derivatives for biopharmaceutical use: mucoadhesive properties chitosan-based systems for mucosal delivery of biopharmaceuticals chitosan-based delivery systems for mucosal vaccination chitosan-based nanoparticulates for oral delivery of biopharmaceuticals chitosan-based systems for ocular delivery of biopharmaceuticals chemical modification of chitosan for delivery of DNA and siRNA target-specific chitosan-based nanoparticle systems for nucleic acid delivery functional PEGylated chitosan systems for biopharmaceuticals stimuli-sensitive chitosan-based systems for biopharmaceuticals chitosan copolymers for biopharmaceuticals application of chitosan for anti-cancer biopharmaceutical delivery chitosan-based biopharmaceuticals scaffolds in tissue engineering and regenerative medicine wound healing properties of chitosan and its use in wound dressing biopharmaceuticals toxicological properties of chitosan and derivatives for biopharmaceutical applications regulatory status of chitosan and derivatives patentability and intellectual property issues quality control and good manufacturing practice preclinical and clinical use of chitosan and derivatives for biopharmaceuticals Chitosan-Based Systems for Biopharmaceuticals is an important compendium of fundamental concepts, practical tools and applications of chitosan-based biopharmaceuticals for researchers in academia and industry working in drug formulation and delivery, biopharmaceuticals, medicinal chemistry, pharmacy, bioengineering and new materials development.




Fundamentals of Drug Delivery


Book Description

A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.




Drug Delivery Technology Development in Canada


Book Description

Canada continues to have a rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Over the past 30 years, numerous Canadian-based biotechnology companies have been formed from the inventions conceived and developed within academic institutions that have led to the development of important drug delivery products that have enhanced the landscape of drug therapy in the treatment of cancer to infectious diseases. This Special Issue serves to highlight and capture the contemporary progress of drug delivery within the prevailing Canadian context. We invite articles on all aspects of drug delivery sciences from pre-clinical formulation development to human clinical trials that bring to light the world-class research currently undertaken in Canada for this Special Issue.




Drug Absorption Studies


Book Description

This is a well thought-out, highly practical text covering contemporary ‘in vitro’ techniques for drug absorption studies. Starting at the molecular level of investigation, it continues with cell monolayer models (both primary and cell lines) and culminates with in situ techniques as a final testing format. In addition, chapters on high-throughput assays, in vitro-in vivo correlation, bioinformatics and regulatory issues are covered, giving a comprehensive overview of available models and techniques. Moreover, an appendix consisting of a number of practical protocols is available online, updated as needed, and should prove very helpful to apply the techniques directly to the benchside.




Characterization of Pharmaceutical Nano- and Microsystems


Book Description

Learn about the analytical tools used to characterize particulate drug delivery systems with this comprehensive overview Edited by a leading expert in the field, Characterization of Pharmaceutical Nano- and Microsystems provides a complete description of the analytical techniques used to characterize particulate drug systems on the micro- and nanoscale. The book offers readers a full understanding of the basic physicochemical characteristics, material properties and differences between micro- and nanosystems. It explains how and why greater experience and more reliable measurement techniques are required as particle size shrinks, and the measured phenomena grow weaker. Characterization of Pharmaceutical Nano- and Microsystems deals with a wide variety of topics relevant to chemical and solid-state analysis of drug delivery systems, including drug release, permeation, cell interaction, and safety. It is a complete resource for those interested in the development and manufacture of new medicines, the drug development process, and the translation of those drugs into life-enriching and lifesaving medicines. Characterization of Pharmaceutical Nano- and Microsystems covers all of the following topics: An introduction to the analytical tools applied to determine particle size, morphology, and shape Common chemical approaches to drug system characterization A description of solid-state characterization of drug systems Drug release and permeation studies Toxicity and safety issues The interaction of drug particles with cells Perfect for pharmaceutical chemists and engineers, as well as all other industry professionals and researchers who deal with drug delivery systems on a regular basis, Characterization of Pharmaceutical Nano- and Microsystems also belongs on bookshelves of interested students and faculty who interact with this topic.




Oral Mucosal Drug Delivery and Therapy


Book Description

This volume provides a comprehensive overview of the current issues facing scientists working on delivering drugs locally and systemically via the membranes that line the mouth. The book describes the anatomical and physiological challenges of this route for drug delivery and how they impact the design of oral mucosal drug delivery systems. It also provides a detailed description of current oral mucosal drug delivery technologies that overcome these challenges alongside research, development and assessment methods. In 11 authoritative chapters, the book affords an in-depth evaluation of the major issues associated with this route of administration, namely the retention of the drug/product at the site of administration and increasing drug permeability through the oral mucosa. The book provides insights into the in vitro and in vivo methods available to assess drug permeability and retention, offers solutions on how to improve the permeation of the drugs through the oral mucosa, and explores approaches to prolong drug/product retention at the site of administration. It also indicates future directions in research and product development. Oral Mucosal Drug Delivery and Therapy is a key resource for those wishing to extend their knowledge of this field.