Book Description
This Research Topic is part of the article collection series - Multi-omics and Computational Biology in Horticultural Plants: From Genotype to Phenotype. Horticultural plants play an important role for humans by providing herbal medicines, beverages, vegetables, fruits, and ornamentals. High-throughput technologies have revolutionised the time scale and power of detecting insights into physiological changes and biological mechanisms in plants. All sequencing data and tools have helped us better understand the evolutionary histories of horticultural plants and provide genotype and phenotype resources for molecular studies on economically important traits. The integration of these -omics technologies (e.g., genomics, transcriptomics, proteomics, metabolomics, lipidomics, ionomics, and redoxomics) is currently at the forefront of plant research. The genomes of horticultural plants are highly diverse and complex, often with a high degree of heterozygosity and polyploidy. Novel computational methods need to be developed to take advantage of state-of-the-art genomic technologies. As a result, the mining of multi-omics data and the development of new computational biology approaches for the reliable and efficient analysis of plant traits is necessary.