Introduction to Nuclear and Particle Physics


Book Description

This textbook fills the gap between the very basic and the highly advanced volumes that are widely available on the subject. It offers a concise but comprehensive overview of a number of topics, like general relativity, fission and fusion, which are otherwise only available with much more detail in other textbooks. Providing a general introduction to the underlying concepts (relativity, fission and fusion, fundamental forces), it allows readers to develop an idea of what these two research fields really involve. The book uses real-world examples to make the subject more attractive and encourage the use of mathematical formulae. Besides short scientists' biographies, diagrams, end-of-chapter problems and worked solutions are also included. Intended mainly for students of scientific disciplines such as physics and chemistry who want to learn about the subject and/or the related techniques, it is also useful to high school teachers wanting to refresh or update their knowledge and to interested non-experts.




Quantum Electrodynamics


Book Description

Since the need for a third edition of this book has arisen, we have endeavoured to improve and extend it in several ways. At many places small changes were made, misprints have been corrected, and references have been added. In Chap. 5 new theoretical and experimental results on the Lamb shift in heavy atoms and on the anomalous magnetic moment of the muon are reported. We have also added a number of new topics in Chaps. 3, 5, and 7 in the form of examples and exercises. Example 3. 19 contains a detailed treatment of electron-positron pair production in the collision of a high-energy photon with a laser beam. This is supplemented by Exercise 3. 20 where a closed solution of the Dirac equation in the field of a plane wave is derived. Furthermore, Example 5. 4 on the running coupling constant in QED and Example 7. 6 on the supercritial point charge prob lem have been added. Finally, Example 7. 8 treats the birefringence of the QED vacuum in a strong magnetic field. We thank all colleagues and readers who have informed us about misprints in the book and are grateful to the team at Springer-Verlag for expertly handling the preparation of this new edition. Frankfurt am Main, Walter Greiner August 2002 Joachim Reinhardt Preface to the Second Edition The need for a second edition of our text on Quantum Electrodynamics has given us the opportunity to implement some corrections and amendments.




Single-Photon Generation and Detection


Book Description

Single-photon generation and detection is at the forefront of modern optical physics research. This book is intended to provide a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared. The use of single photons, produced on demand with well-defined quantum properties, offers an unprecedented set of capabilities that are central to the new area of quantum information and are of revolutionary importance in areas that range from the traditional, such as high sensitivity detection for astronomy, remote sensing, and medical diagnostics, to the exotic, such as secretive surveillance and very long communication links for data transmission on interplanetary missions. The goal of this volume is to provide researchers with a comprehensive overview of the technology and techniques that are available to enable them to better design an experimental plan for its intended purpose. The book will be broken into chapters focused specifically on the development and capabilities of the available detectors and sources to allow a comparative understanding to be developed by the reader along with and idea of how the field is progressing and what can be expected in the near future. Along with this technology, we will include chapters devoted to the applications of this technology, which is in fact much of the driver for its development. This is set to become the go-to reference for this field. - Covers all the basic aspects needed to perform single-photon experiments and serves as the first reference to any newcomer who would like to produce an experimental design that incorporates the latest techniques - Provides a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared, thus giving broad background that should enable newcomers to the field to make rapid progress in gaining proficiency - Written by leading experts in the field, among which, the leading Editor is recognized as having laid down the roadmap, thus providing the reader with an authenticated and reliable source




A Certain Uncertainty


Book Description

Based around a series of real-life scenarios, this engaging introduction to statistical reasoning will teach you how to apply powerful statistical, qualitative and probabilistic tools in a technical context. From analysis of electricity bills, baseball statistics, and stock market fluctuations, through to profound questions about physics of fermions and bosons, decaying nuclei, and climate change, each chapter introduces relevant physical, statistical and mathematical principles step-by-step in an engaging narrative style, helping to develop practical proficiency in the use of probability and statistical reasoning. With numerous illustrations making it easy to focus on the most important information, this insightful book is perfect for students and researchers of any discipline interested in the interwoven tapestry of probability, statistics, and physics.




Fundamentals of Cosmic Particle Physics


Book Description

This current updated and expanded text reflects the large number of scientific advances, both theoretically and experimentally, within the discipline of cosmoparticle physics in the last 10 years. Some of the topics that have been added, updated include but are not limited to; HND or CMD+HND scenarios being implemented into sterile neutrino scenarios, the ramifications of extending the forms of dark matter with respect to our view of neutrinos, the origin of baryon matter and the need for non-baryonic matter in current theories, problems the existence of dark matters raises with respect to cosmoparticle physics and the relationship with (meta) stable (super) weakly interacting particles predicted by the extension of the standard model, restrictions on baryon and lepton photons, as well as problems associated with cosmological expansion just to name a few. These and many other topics are readdressed in light of recent both experimental and theoretical developments. Other areas of that will be of interest to the reader include the puzzles presented by direct and indirect effects of dark matter (e.g, results of experiments such as DAMA/NaI, DAMA/LIBRA and PAMELA) may lead to nontrivial new solutions for the problem of its nature, like the existence of new stable families of quarks and leptons and composite dark matter scenario. The present work will be of interest to any researcher interested in this fascinating field dealing with fundamental interactions of the micro- and macroworld.




Quantum Electrodynamics


Book Description




Radiation and Solid State Physics, Nuclear and High Energy Physics, Mathematical Physics


Book Description

The first of two volumes presenting an overview of the important research areas in which Professor H. Überall has done his life's work and constitutes a festschrift for this distinguished physicist. Each chapter is intended to serve as a bridge between advanced textbooks and the most recent research literature, thereby providing a valuable reference for active researchers as well as for graduate students.




High Energy Astrophysics


Book Description

High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, etc), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics processes are crucial. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.




Literature 1984, Part 1


Book Description




College Physics Essentials, Eighth Edition (Two-Volume Set)


Book Description

This new edition of College Physics Essentials provides a streamlined update of a major textbook for algebra-based physics. The first volume covers topics such as mechanics, heat, and thermodynamics. The second volume covers electricity, atomic, nuclear, and quantum physics. The authors provide emphasis on worked examples together with expanded problem sets that build from conceptual understanding to numerical solutions and real-world applications to increase reader engagement. Including over 900 images throughout the two volumes, this textbook is highly recommended for students seeking a basic understanding of key physics concepts and how to apply them to real problems.