Multi-Scale and High-Contrast PDE


Book Description

Contains the proceedings of the conference Multi-Scale and High-Contrast PDE: From Modelling, to Mathematical Analysis, to Inversion, held June, 2011. The volume focuses on recent progress towards a complete understanding of the direct problem with high contrast or high frequencies, and unified approaches to the inverse and imaging problems for both small and large contrast or frequencies. It also includes contributions on the inverse problem, both on its analysis and on numerical reconstructions.




Imaging, Multi-scale and High Contrast Partial Differential Equations


Book Description

This volume contains the proceedings of the Seoul ICM 2014 Satellite Conference on Imaging, Multi-scale and High-Contrast PDEs, held from August 7-9, 2014, in Daejeon, Korea. The mathematical analysis of partial differential equations modelling materials, or tissues, presenting multiple scales has been a very active area of research. The study of the corresponding imaging or reconstruction problem is a more recent area. If the material parameters of the partial differential equation present high contrast ratio, then the solution to the PDE becomes particularly challenging to analyze and compute. On the other hand, imaging in highly heterogeneous media poses significant challenges to the mathematical community. The focus of this volume is on recent progress towards complete understanding of the direct problem with high contrast or high frequencies, and unified approaches to the inverse and imaging problems for both small and large contrast or frequencies. Of particular importance in imaging are shape representation techniques and regularization approaches. Special attention is devoted to new models and problems coming from physics leading to innovative imaging and signal processing methods.




Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems


Book Description

Tearing and interconnecting methods, such as FETI, FETI-DP, BETI, etc., are among the most successful domain decomposition solvers for partial differential equations. The purpose of this book is to give a detailed and self-contained presentation of these methods, including the corresponding algorithms as well as a rigorous convergence theory. In particular, two issues are addressed that have not been covered in any monograph yet: the coupling of finite and boundary elements within the tearing and interconnecting framework including exterior problems, and the case of highly varying (multiscale) coefficients not resolved by the subdomain partitioning. In this context, the book offers a detailed view to an active and up-to-date area of research.




Multiscale Model Reduction


Book Description

This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.




Recent Trends in Nonlinear Partial Differential Equations II


Book Description

This book is the second of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honour of Patrizia Pucci's 60th birthday. The workshop brought together leading experts and researchers in nonlinear partial differential equations to promote research and to stimulate interactions among the participants.




Recent Trends in Nonlinear Partial Differential Equations I


Book Description

This book is the first of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honor of Patrizia Pucci's 60th birthday. The workshop brought t




Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations


Book Description

This volume presents the proceedings of the Southeast Geometry Seminar for the meetings that took place bi-annually between the fall of 2009 and the fall of 2011, at Emory University, Georgia Institute of Technology, University of Alabama Birmingham, and the University of Tennessee. Talks at the seminar are devoted to various aspects of geometric analysis and related fields, in particular, nonlinear partial differential equations, general relativity, and geometric topology. Articles in this volume cover the following topics: a new set of axioms for General Relativity, CR manifolds, the Mane Conjecture, minimal surfaces, maximal measures, pendant drops, the Funk-Radon-Helgason method, ADM-mass and capacity, and extrinsic curvature in metric spaces.




Geometric Science of Information


Book Description

This book constitutes the refereed proceedings of the First International Conference on Geometric Science of Information, GSI 2013, held in Paris, France, in August 2013. The nearly 100 papers presented were carefully reviewed and selected from numerous submissions and are organized into the following thematic sessions: Geometric Statistics on Manifolds and Lie Groups, Deformations in Shape Spaces, Differential Geometry in Signal Processing, Relational Metric, Discrete Metric Spaces, Computational Information Geometry, Hessian Information Geometry I and II, Computational Aspects of Information Geometry in Statistics, Optimization on Matrix Manifolds, Optimal Transport Theory, Probability on Manifolds, Divergence Geometry and Ancillarity, Entropic Geometry, Tensor-Valued Mathematical Morphology, Machine/Manifold/Topology Learning, Geometry of Audio Processing, Geometry of Inverse Problems, Algebraic/Infinite dimensional/Banach Information Manifolds, Information Geometry Manifolds, and Algorithms on Manifolds.




Mathematical and Computational Methods in Photonics and Phononics


Book Description

The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.




Recent Advances in the Geometry of Submanifolds


Book Description

This volume contains the proceedings of the AMS Special Session on Geometry of Submanifolds, held from October 25–26, 2014, at San Francisco State University, San Francisco, CA, and the AMS Special Session on Recent Advances in the Geometry of Submanifolds: Dedicated to the Memory of Franki Dillen (1963–2013), held from March 14–15, 2015, at Michigan State University, East Lansing, Ml. The focus of the volume is on recent studies of submanifolds of Riemannian, semi-Riemannian, Kaehlerian and contact manifolds. Some of these use techniques in classical differential geometry, while others use methods from ordinary differential equations, geometric analysis, or geometric PDEs. By brainstorming on the fundamental problems and exploring a large variety of questions studied in submanifold geometry, the editors hope to provide mathematicians with a working tool, not just a collection of individual contributions. This volume is dedicated to the memory of Franki Dillen, whose work in submanifold theory attracted the attention of and inspired many geometers.