Multicriteria Optimization of Nondifferentiable Stochastic Biosystems
Author : James Carl Schäper
Publisher :
Page : 530 pages
File Size : 42,21 MB
Release : 1998
Category : Corn
ISBN :
Author : James Carl Schäper
Publisher :
Page : 530 pages
File Size : 42,21 MB
Release : 1998
Category : Corn
ISBN :
Author :
Publisher :
Page : 848 pages
File Size : 16,22 MB
Release : 1999
Category : Dissertation abstracts
ISBN :
Author :
Publisher :
Page : 856 pages
File Size : 24,20 MB
Release : 2000
Category : Dissertations, Academic
ISBN :
Author : S. S. Rao
Publisher : New Age International
Page : 936 pages
File Size : 49,82 MB
Release : 2000
Category : Engineering
ISBN : 9788122411492
A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.
Author : Radu Ioan Bot
Publisher : Springer Science & Business Media
Page : 408 pages
File Size : 18,99 MB
Release : 2009-08-12
Category : Mathematics
ISBN : 3642028861
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.
Author : A.E. Eiben
Publisher : Springer Science & Business Media
Page : 328 pages
File Size : 10,9 MB
Release : 2007-08-06
Category : Computers
ISBN : 9783540401841
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Author : Albert Y. Zomaya
Publisher : Springer Science & Business Media
Page : 758 pages
File Size : 47,98 MB
Release : 2006-01-10
Category : Computers
ISBN : 9780387405322
As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.
Author : Qamrul Hasan Ansari
Publisher : Springer
Page : 517 pages
File Size : 22,64 MB
Release : 2017-10-31
Category : Business & Economics
ISBN : 3319630490
This book presents the mathematical theory of vector variational inequalities and their relations with vector optimization problems. It is the first-ever book to introduce well-posedness and sensitivity analysis for vector equilibrium problems. The first chapter provides basic notations and results from the areas of convex analysis, functional analysis, set-valued analysis and fixed-point theory for set-valued maps, as well as a brief introduction to variational inequalities and equilibrium problems. Chapter 2 presents an overview of analysis over cones, including continuity and convexity of vector-valued functions. The book then shifts its focus to solution concepts and classical methods in vector optimization. It describes the formulation of vector variational inequalities and their applications to vector optimization, followed by separate chapters on linear scalarization, nonsmooth and generalized vector variational inequalities. Lastly, the book introduces readers to vector equilibrium problems and generalized vector equilibrium problems. Written in an illustrative and reader-friendly way, the book offers a valuable resource for all researchers whose work involves optimization and vector optimization.
Author : Ke-Lin Du
Publisher : Birkhäuser
Page : 437 pages
File Size : 35,48 MB
Release : 2016-07-20
Category : Computers
ISBN : 3319411926
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.
Author : Oliver Kramer
Publisher : Springer Science & Business Media
Page : 137 pages
File Size : 49,32 MB
Release : 2013-05-30
Category : Technology & Engineering
ISBN : 3642386520
This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.