Multilevel and Longitudinal Modeling Using Stata, Volumes I and II


Book Description

"Multilevel and Longitudinal Modeling Using Stata, Fourth Edition discusses regression modeling of clustered or hierarchical data, such as data on students nested in schools, patients in hospitals, or employees in firms. Longitudinal data are also clustered with, for instance, repeated measurements on patients or several panel waves per survey respondent. Multilevel and longitudinal modeling can exploit the richness of such data and can disentangle processes operating at different levels. Assuming some knowledge of linear regression, this bestseller explains models and their assumptions, applies methods to real data using Stata, and shows how to interpret the results. Across volumes, the 16 chapters, over 140 exercises, and over 110 datasets span a wide range of disciplines, making the book suitable for courses in the medical, social, and behavioral sciences and in applied statistics. This first volume is dedicated to models for continuous responses and is a prerequisite for the second volume on models for other response types. It has been thoroughly revised and updated for Stata 16. New material includes the Kenward-Roger degree-of-freedom correction for improved inference with a small number of clusters, difference-in-differences estimation for natural experiments, and instrumental-variable estimation to handle level-1 endogeneity"--




Generalized Latent Variable Modeling


Book Description

This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi




Multilevel and Longitudinal Modeling Using Stata, Second Edition


Book Description

This textbook looks specifically at Stata’s treatment of generalized linear mixed models, also known as multilevel or hierarchical models. These models are "mixed" because they allow fixed and random effects, and they are "generalized" because they are appropriate for continuous Gaussian responses as well as binary, count, and other types of limited dependent variables.




Multilevel and Longitudinal Modeling Using Stata


Book Description

Volume I is devoted to continuous Gaussian linear mixed models and has nine chapters. The chapters are organized in four parts. The first part provides a review of the methods of linear regression. The second part provides an in-depth coverage of the two-level models, the simplest extensions of a linear regression model. The mixed-model foundation and the in-depth coverage of the mixed-model principles provided in volume I for continuous outcomes, make it straightforward to transition to generalized linear mixed models for noncontinuous outcomes described in volume II.




Multilevel Modeling Using Mplus


Book Description

This book is designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. The focus is on presenting the theory and practice of major multilevel modelling techniques in a variety of contexts, using Mplus as the software tool, and demonstrating the various functions available for these analyses in Mplus, which is widely used by researchers in various fields, including most of the social sciences. In particular, Mplus offers users a wide array of tools for latent variable modelling, including for multilevel data.




Multilevel and Longitudinal Modeling with IBM SPSS


Book Description

This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. It's ideal for courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology.




Handbook of Statistical Analyses Using Stata


Book Description

With each new release of Stata, a comprehensive resource is needed to highlight the improvements as well as discuss the fundamentals of the software. Fulfilling this need, AHandbook of Statistical Analyses Using Stata, Fourth Edition has been fully updated to provide an introduction to Stata version 9. This edition covers many




An Introduction to Survival Analysis Using Stata, Second Edition


Book Description

"[This book] provides new researchers with the foundation for understanding the various approaches for analyzing time-to-event data. This book serves not only as a tutorial for those wishing to learn survival analysis but as a ... reference for experienced researchers ..."--Book jacket.




Multilevel Modeling in Plain Language


Book Description

Have you been told you need to do multilevel modeling, but you can′t get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense? Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.