Multimetallic Catalysts in Organic Synthesis


Book Description

This first book to comprehensively cover this hot topic presents the information hitherto scattered throughout smaller reviews or single book chapters to provide an introduction to this rapidly expanding field. In ten chapters, the international team of expert authors treats asymmetric syntheses, new transformations, and organometallic reactions using homo- and hetero-bimetallic catalysts. Written for advanced researchers, this very timely publication is of significant benefit to organic and organometallic chemists in both academia and industry.




Bifunctional Molecular Catalysis


Book Description

Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of ”Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Bäckvall: Shvo’s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis.




Copper Catalysis in Organic Synthesis


Book Description

The most current information on growing field of copper catalysis Copper Catalysis in Organic Synthesis contains an up-to-date overview of the most important reactions in the presence of copper catalysts. The contributors—noted experts on the topic—provide an introduction to the field of copper catalysis, reviewing its development, scope, and limitations, as well as providing descriptions of various homo- and cross-coupling reactions. In addition, information is presented on copper-catalyzed C–H activation, amination, carbonylation, trifluoromethylation, cyanation, and click reactions. Comprehensive in scope, the book also describes microwave-assisted and multi-component transformations as well as copper-catalyzed reactions in green solvents and continuous flow reactors. The authors highlight the application of copper catalysis in asymmetric synthesis and total synthesis of natural products and heterocycles as well as nanocatalysis. This important book: Examines copper and its use in organic synthesis as a more cost-effective and sustainable for researchers in academia and industry Offers the first up-to-date book to explore copper as a first line catalyst for many organic reactions Presents the most significant developments in the area, including cross-coupling reactions, C–H activation, asymmetric synthesis, and total synthesis of natural products and heterocycles Contains over 20 contributions from leaders in the field Written for catalytic chemists, organic chemists, natural products chemists, pharmaceutical chemists, and chemists in industry, Copper Catalysis in Organic Synthesis offers a book on the growing field of copper catalysis, covering cross-coupling reactions, C–H activation, and applications in the total synthesis of natural products.




Cobalt Catalysis in Organic Synthesis


Book Description

Provides a much-needed account of the formidable "cobalt rush" in organic synthesis and catalysis Over the past few decades, cobalt has turned into one of the most promising metals for use in catalytic reactions, with important applications in the efficient and selective synthesis of natural products, pharmaceuticals, and new materials. Cobalt Catalysis in Organic Synthesis: Methods and Reactions provides a unique overview of cobalt-catalysed and -mediated reactions applied in modern organic synthesis. It covers a broad range of homogeneous reactions, like cobalt-catalysed hydrogenation, hydrofunctionalization, cycloaddition reactions, C-H functionalization, as well as radical and biomimetic reactions. First comprehensive book on this rapidly evolving research area Covers a broad range of homogeneous reactions, such as C-H activation, cross-coupling, synthesis of heterocyclic compounds (Pauson-Khand), and more Chapters on low-valent cobalt complexes as catalysts in coupling reactions, and enantioselective cobalt-catalyzed transformations are also included Can be used as a supplementary reader in courses of advanced organic synthesis and organometallic chemistry Cobalt Catalysis in Organic Synthesis is an ideal book for graduates and researchers in academia and industry working in the field of synthetic organic chemistry, catalysis, organometallic chemistry, and natural product synthesis.




Advanced Nanocatalysis for Organic Synthesis and Electroanalysis


Book Description

This technical reference covers information about modern nanocatalysts and their applications in organic syntheses, electrochemistry and nanotechnology. The objective of this book is to present a review of the development of nanocatalysts in the fields of organic synthesis and electroanalysis over the last few decades. It provides readers comprehensive, systematic and updated information about the relevant topics. The reader is introduced to nanocatalysts, with the following chapters delving into the different chemical reactions in which they are involved. The topics covered include: carbon-carbon coupling reactions, aryl and organic carbon hetero atom coupling reactions, oxidation-reduction reactions, photocatalysis, heterocyclic reactions and multicomponent catalysis. The concluding chapters cover applications of nanocatalysts in electrochemical synthesis and sensing. The thirteen chapters demonstrate the value of a variety of catalysts that are important in chemical engineering processes. Advanced Nanocatalysis for Organic Synthesis and Electroanalysis delivers a quick and accessible reference on advanced nanocatalysis for a broad range of readers which includes graduate, postgraduate and Ph. D. students of chemical engineering as well as faculty members, research and development (R&D) personnel working in the industrial chemistry sector.




Advances in Catalysis


Book Description

Surface science emerged in the 1960s with the development of reliable ultrahigh vacuum apparatus, providing exact structures of surfaces of metal single crystals, information about their compositions, and relationships between surface structure and composition and catalytic reaction rates. Catalysis, the acceleration of a chemical reaction by a catalyst (substance), provided much of the driving force for the early development of surface science. As surface science continues its rapid development, this book illustrates how it is still driven by the challenges of catalysis and how both theory and scanning tunneling microscopy have forcefully emerged as essential tools. It is also evident how surface science continues to serve as the foundation of catalytic science. This is a compendium written by leading surface scientists presenting an incisive assessment of up-to-date theoretical and experimental results constituting the foundation of fundamental understanding of surface catalysis. This paperback.




Silver Catalysis in Organic Synthesis


Book Description

Covers all the aspects of the recent achievements in silver catalyzed reactions Silver catalysis has emerged as a powerful tool in the field of organic synthesis. This comprehensive book systematically explores the unique performance of silver catalysis, introducing all the recent progress of silver catalysis in organic synthesis. It clearly emphasizes the unique features of silver catalysis and provides the reaction mechanism involved. This two-volume book also provides vivid schematics and tables throughout to enhance the accessibility to the relevant theory and mechanisms. Silver Catalysis in Organic Synthesis begins with an introduction to Silver Chemistry before moving on to chapters covering: Silver-Catalyzed Cycloaddition Reactions; Silver-Catalyzed Cyclizations; Silver-Mediated Radical Reactions; Silver-Mediated Fluorination, Perfluoroalkylation and Trifluoromethylthiolation Reactions; Coupling Reactions and C-H Functionalization; Silver-Catalyzed CO2 Incorporation; Silver-Catalyzed Carbene, Nitrene, and Silylene Transfer Reactions; Asymmetric Silver-Catalyzed Reactions; Silver-Catalyzed Reduction and Oxidation of Aldehydes and Their Derivatives; Silver Complexes in Organic Transformations; and Silver Nanoparticles in Organic Transformations. -Covers recently developed organic reactions catalyzed by silver, along with their reaction mechanism -Introduces many new reactions and mechanisms related to silver catalysis -Offers professionals and newcomers in the related fields a survey of new advances in silver catalysis in organic synthesis Silver Catalysis in Organic Synthesis will appeal to a wide readership including chemists, biochemists, pharmaceutical scientists, biomedical researchers, agriculture scientists, and graduate students in the related fields.




Catalyst Preparation


Book Description

This text explores the optimization of catalytic materials through traditional and novel methods of catalyst preparation, characterization, and monitoring for oxides, supported metals, zeolites, and heteropolyacids. It focuses on the synthesis of bulk materials and of heterogeneous materials, particularly at the nanoscale. The final chapters examine pretreatment, drying, finishing effects, and future applications involving catalyst preparation and the technological advances necessary for continued progress. Topics also include heat and mass transfer limitations, computation methods for predicting properties, and catalyst monitoring on laboratory and industrial scales.




Ruthenium in Organic Synthesis


Book Description

In this comprehensive book, one of the leading experts, Shun-Ichi Murahashi, presents all the important facets of modern synthetic chemistry using Ruthenium, ranging from hydrogenation to metathesis. In 14 contributions, written by an international authorship, readers will find all the information they need about this fascinating and extraordinary chemistry. The result is a high quality information source and a indispensable reading for everyone working in organometallic chemistry. From the contents: Introduction (S.-I. Murahashi) Hydrogenation and Transfer Hydrogenation (M. Kitamura and R. Noyori) Oxidations (S.-I. Murahashi and N. Komiya) Carbon-Carbon Bond Formations via Ruthenacycle Intermediates (K. Itoh) Carbon-Carbon Bond Formation via pi-Allylruthenium Intermediates (T. Mitsudo) Olefin Metathesis (R. H. Grubbs) Cyclopropanation (H. Nishiyama) Nucleophilic Addition to Alkynes and Reactions via Vinylidene Intermediates (P. Dixneuf) Reactions via C-H Activation (N. Chatani) Lewis Acid Reactions (E. P. Kundig) Reactions with CO and CO2 (T. Mitsudo) Isomerization of Organic Substrates Catalyzed by Ruthenium Complexes (H. Suzuki) Radical Reactions (H. Nagashima) Bond Cleavage Reactions (S. Komiya)




Nickel Catalysis in Organic Synthesis


Book Description

A comprehensive reference to nickel chemistry for every scientist working with organometallic catalysts Written by one of the world?s leading reseachers in the field, Nickel Catalysis in Organic Synthesis presents a comprehensive review of the high potential of modern nickel catalysis and its application in synthesis. Structured in a clear and assessible manner, the book offers a collection of various reaction types, such as cross-coupling reactions, reactions for the activation of unreactive bonds, carbon dioxide fixation, and many more. Nickel has been recognized as one of the most interesting transition metals for homogeneous catalysis. This book offers an overview to the recently developed new ligands, new reaction conditions, and new apparatus to control the reactivity of nickel catalysts, allowing scientists to apply nickel catalysts to a variety of bond-forming reactions. A must-read for anyone working with organometallic compounds and their application in organic synthesis, this important guide: -Reviews the numerous applications of nickel catalysis in synthesis -Explores the use of nickel as a relatively cheap and earth-abundant metal -Examines the versatility of nickel catalysis in reactions like cross-coupling reactions and CH activations -Offers a resource for academics and industry professionals Written for catalytic chemists, organic chemists, inorganic chemists, structural chemists, and chemists in industry, Nickel Catalysis in Organic Synthesis provides a much-needed overview of the most recent developments in modern nickel catalysis and its application in synthesis.