Multiphase Flow in Oil and Gas Well Drilling


Book Description

A major contribution to the state-of-the-art for those interested in multiphase flow in well-bore, drilling cutting, hydrate and/or acid gas involvements The author is a leading researcher on the topics presented, and his development of gas-liquid flow pattern transition mechanism and multiphase flow models are major contributions to the multi-phase flow in wellbore Focuses on acid gas and hydrate involvements, offering the latest results from drilling engineering computation research Presents an emerging hot spot in petroleum engineering, with more multi-phase flow methodologies developed and adopted to improve the engineering process for gas & oil drilling and production




Multiphase Flow in Oil and Gas Well Drilling


Book Description

A major contribution to the state-of-the-art for those interested in multiphase flow in well-bore, drilling cutting, hydrate and/or acid gas involvements The author is a leading researcher on the topics presented, and his development of gas-liquid flow pattern transition mechanism and multiphase flow models are major contributions to the multi-phase flow in wellbore Focuses on acid gas and hydrate involvements, offering the latest results from drilling engineering computation research Presents an emerging hot spot in petroleum engineering, with more multi-phase flow methodologies developed and adopted to improve the engineering process for gas & oil drilling and production




Handbook of Multiphase Flow Assurance


Book Description

Handbook of Multiphase Flow Assurance allows readers to progress in their understanding of basic phenomena and complex operating challenges. The book starts with the fundamentals, but then goes on to discuss phase behavior, fluid sampling, fluid flow properties and fluid characterization. It also covers flow assurance impedance, deliverability, stability and integrity issues, as well as hydraulic, thermal and risk analysis. The inclusion of case studies and references helps provide an industrial focus and practical application that makes the book a novel resource for flow assurance management and an introductory reference for engineers just entering the field of flow assurance. - Starts with flow assurance fundamentals, but also includes more complex operating challenges - Brings together cross-disciplinary discussions and solutions of flow assurance in a single text - Offers case studies and reference guidelines for practical applications




Multiphase Flow in Wells


Book Description




Multiphase Fluid Flow in Porous and Fractured Reservoirs


Book Description

Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website







Applied Gaseous Fluid Drilling Engineering


Book Description

Applied Gaseous Fluid Drilling Engineering: Design and Field Case Studies provides an introduction on the benefits of using gaseous fluid drilling engineering. In addition, the book describes the multi-phase systems needed, along with discussions on stability control. Safety and economic considerations are also included, as well as key components of surface equipment needed and how to properly select equipment depending on the type of fluid system. Rounding out with proven case studies that demonstrate good practices and lessons from failures, this book delivers a practical tool for understanding the guidelines and mitigations needed to utilize this valuable process and technology. - Helps readers gain a framework of understanding regarding the basic processes, technology and equipment needed for gaseous fluid drilling operations - Highlights benefits and challenges using drilling flow charts, photos of relevant equipment, and table comparisons of available fluid systems - Presents multiple case studies involving successful and unsuccessful operations







An Introduction to Reservoir Simulation Using MATLAB/GNU Octave


Book Description

Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.




Computational Methods in Multiphase Flow VII


Book Description

Multiphase flows are found in all areas of technology, at all length scales and flow regimes and can involve compressible or incompressible linear or nonlinear, fluids. However, although they are ubiquitous, multiphase flows continue to be one of the most challenging areas of computational mechanics, with numerous problems as yet unsolved. Advanced computational and experimental methods are often required to solve the equations that describe such complex problems. The many challenges that must be faced in solving them include modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterising phase structures, and treating drop break-up and coalescence. It is important to validate models, which calls for the use of expensive and difficult experimental techniques.This book presents contributions on the latest research in the techniques for solving multiphase flow problems, presented at the seventh in a biennial series of conferences on the subject that began in 2001. Featured topics include: Flow in porous media; Turbulent flow; Multiphase flow simulation; Image processing; Heat transfer; Atomization; Interface behaviour; Oil and gas applications; Experimental measurements; Energy applications; Biological flows; Micro and macro fluids; Compressible flows.