Multiple Approaches to Intelligent Systems


Book Description

We never create anything, We discover and reproduce. The Twelfth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems has a distinguished theme. It is concerned with bridging the gap between the academic and the industrial worlds of Artificial Intelligence (AI) and Expert Systems. The academic world is mainly concerned with discovering new algorithms, approaches, and methodologies; however, the industrial world is mainly driven by profits, and concerned with producing new products or solving customers’ problems. Ten years ago, the artificial intelligence research gap between academia and industry was very broad. Recently, this gap has been narrowed by the emergence of new fields and new joint research strategies in academia. Among the new fields which contributed to the academic-industrial convergence are knowledge representation, machine learning, searching, reasoning, distributed AI, neural networks, data mining, intelligent agents, robotics, pattern recognition, vision, applications of expert systems, and others. It is worth noting that the end results of research in these fields are usually products rather than empirical analyses and theoretical proofs. Applications of such technologies have found great success in many domains including fraud detection, internet service, banking, credit risk and assessment, telecommunication, etc. Progress in these areas has encouraged the leading corporations to institute research funding programs for academic institutes. Others have their own research laboratories, some of which produce state of the art research.




Intelligent Systems


Book Description

Ongoing advancements in modern technology have led to significant developments in intelligent systems. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Intelligent Systems: Concepts, Methodologies, Tools, and Applications contains a compendium of the latest academic material on the latest breakthroughs and recent progress in intelligent systems. Including innovative studies on information retrieval, artificial intelligence, and software engineering, this multi-volume book is an ideal source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of intelligent systems.




Engineering Intelligent Hybrid Multi-Agent Systems


Book Description

Engineering Intelligent Hybrid Multi-Agent Systems is about building intelligent hybrid systems. Included is coverage of applications and design concepts related to fusion systems, transformation systems and combination systems. These applications are in areas involving hybrid configurations of knowledge-based systems, case-based reasoning, fuzzy systems, artificial neural networks, genetic algorithms, and in knowledge discovery and data mining. Through examples and applications a synergy of these subjects is demonstrated. The authors introduce a multi-agent architectural theory for engineering intelligent associative hybrid systems. The architectural theory is described at both the task structure level and the computational level. This problem-solving architecture is relevant for developing knowledge agents and information agents. An enterprise-wide system modeling framework is outlined to facilitate forward and backward integration of systems developed in the knowledge, information, and data engineering layers of an organization. In the modeling process, software engineering aspects like agent oriented analysis, design and reuse are developed and described. Engineering Intelligent Hybrid Multi-Agent Systems is the first book in the field to provide details of a multi-agent architecture for building intelligent hybrid systems.




Building Intelligent Systems


Book Description

Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems




Intelligent Systems for Automated Learning and Adaptation: Emerging Trends and Applications


Book Description

"This volume offers intriguing applications, reviews and additions to the methodology of intelligent computing, presenting the emerging trends of state-of-the-art intelligent systems and their practical applications"--Provided by publisher.




Agent-Based Hybrid Intelligent Systems


Book Description

Solving complex problems in real-world contexts, such as financial investment planning or mining large data collections, involves many different sub-tasks, each of which requires different techniques. To deal with such problems, a great diversity of intelligent techniques are available, including traditional techniques like expert systems approaches and soft computing techniques like fuzzy logic, neural networks, or genetic algorithms. These techniques are complementary approaches to intelligent information processing rather than competing ones, and thus better results in problem solving are achieved when these techniques are combined in hybrid intelligent systems. Multi-Agent Systems are ideally suited to model the manifold interactions among the many different components of hybrid intelligent systems. This book introduces agent-based hybrid intelligent systems and presents a framework and methodology allowing for the development of such systems for real-world applications. The authors focus on applications in financial investment planning and data mining.




Intelligent Systems Design


Book Description

In this book, we focus on intelligent systems that are based on the integration of expert systems, hypermedia, and data-base technologies, for together they offer a rich environment for creating computer applications that can increase productivity enormously and act as intelligent assistants. Though hypermedia and expert systems technologies date back thirty or more years as independent technologies, it has only been in the last three years that their paths have fully converged, offering system developers a flexible environment that takes advantage of existing information and data. The combination of hypermedia and expert systems is quite attractive as it leads to overall increases in productivity.




Intelligent Systems: Theory, Research and Innovation in Applications


Book Description

From artificial neural net / game theory / semantic applications, to modeling tools, smart manufacturing systems, and data science research – this book offers a broad overview of modern intelligent methods and applications of machine learning, evolutionary computation, Industry 4.0 technologies, and autonomous agents leading to the Internet of Things and potentially a new technological revolution. Though chiefly intended for IT professionals, it will also help a broad range of users of future emerging technologies adapt to the new smart / intelligent wave. In separate chapters, the book highlights fourteen successful examples of recent advances in the rapidly evolving area of intelligent systems. Covering major European projects paving the way to a serious smart / intelligent collaboration, the chapters explore e.g. cyber-security issues, 3D digitization, aerial robots, and SMEs that have introduced cyber-physical production systems. Taken together, they offer unique insights into contemporary artificial intelligence and its potential for innovation.




Multiagent Systems


Book Description

This is the first comprehensive introduction to multiagent systems and contemporary distributed artificial intelligence that is suitable as a textbook.




Computational Statistics and Mathematical Modeling Methods in Intelligent Systems


Book Description

This book presents real-world problems and exploratory research in computational statistics, mathematical modeling, artificial intelligence and software engineering in the context of the intelligent systems. This book constitutes the refereed proceedings of the 3rd Computational Methods in Systems and Software 2019 (CoMeSySo 2019), a groundbreaking online conference that provides an international forum for discussing the latest high-quality research results.