Multiple Decision Procedures


Book Description

An encyclopaedic coverage of the literature in the area of ranking and selection procedures. It also deals with the estimation of unknown ordered parameters. This book can serve as a text for a graduate topics course in ranking and selection. It is also a valuable reference for researchers and practitioners.













Decision Procedures


Book Description

A decision procedure is an algorithm that, given a decision problem, terminates with a correct yes/no answer. Here, the authors focus on theories that are expressive enough to model real problems, but are still decidable. Specifically, the book concentrates on decision procedures for first-order theories that are commonly used in automated verification and reasoning, theorem-proving, compiler optimization and operations research. The techniques described in the book draw from fields such as graph theory and logic, and are routinely used in industry. The authors introduce the basic terminology of satisfiability modulo theories and then, in separate chapters, study decision procedures for each of the following theories: propositional logic; equalities and uninterpreted functions; linear arithmetic; bit vectors; arrays; pointer logic; and quantified formulas.







Multiple Objective Decision Making — Methods and Applications


Book Description

Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . ,. ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together.




A Single-sample Multiple-decision Procedure for Selecting the Multinomial Event which Has the Highest Probability


Book Description

The problem of selecting the multinomial event which has the highest probability is formulated as a multiple-decision selection problem. Before experimentation starts the experimenter must specify two constants ([theta]*, P*) which are incorporated into the requirement: "The probability of a correct selection is to be equal to or greater than P* whenever the true (but unknown) ratio of the largest to the second largest of the poplation probabilities is equal to or greater than [theta]*." A single-sample procedure which meets the requirement is proposed. The heart of the procedure is the proper choice of N, the number of trials. Two methods of determining N are described: the first is exact and is to be used when N is small; the second is approximate and is to be used when N is large. Tables and sample calculations are provided.




A Sequential Multiple-decision Procedure for Selecting the Best One of Several Normal Populations with a Common Unknown Variance. Ii. Monte Carlo Sampling Results and New Computing Formulae


Book Description

Contents: Statement of the statistical problem S atistical assumptions The experimenter's goal, specification, and requirement Procedure D and the new computing formulae Description of Procedure D Definition of symbols The sampling, stopping, and terminal de cision rules Computation of the stopping statistic Use of Procedure D (method B) with various experimental designs Simplified computing formulae Numerical example Monte Carlo sampling results with Procedure D Description of the sampling procedure Sampling results Discussion of sampling results.




Trends in Multiple Criteria Decision Analysis


Book Description

Multiple Criteria Decision Making (MCDM) is the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process. A key area of research in OR/MS, MCDM is now being applied in many new areas, including GIS systems, AI, and group decision making. This volume is in effect the third in a series of Springer books by these editors (all in the ISOR series), and it brings all the latest developments in MCDM into focus. Looking at developments in the applications, methodologies and foundations of MCDM, it presents research from leaders in the field on such topics as Problem Structuring Methodologies; Measurement Theory and MCDA; Recent Developments in Evolutionary Multiobjective Optimization; Habitual Domains and Dynamic MCDM in Changeable Spaces; Stochastic Multicriteria Acceptability Analysis; and many more chapters.