Multiscale Multibody Dynamics


Book Description

This book presents a novel theory of multibody dynamics with distinct features, including unified continuum theory, multiscale modeling technology of multibody system, and motion formalism implementation. All these features together with the introductions of fundamental concepts of vector, dual vector, tensor, dual tensor, recursive descriptions of joints, and the higher-order implicit solvers formulate the scope of the book’s content. In this book, a multibody system is defined as a set consisted of flexible and rigid bodies which are connected by any kinds of joints or constraints to achieve the desired motion. Generally, the motion of multibody system includes the translation and rotation; it is more efficient to describe the motion by using the dual vector or dual tensor directly instead of defining two types of variables, the translation and rotation separately. Furthermore, this book addresses the detail of motion formalism and its finite element implementation of the solid, shell-like, and beam-like structures. It also introduces the fundamental concepts of mechanics, such as the definition of vector, dual vector, tensor, and dual tensor, briefly. Without following the Einstein summation convention, the first- and second-order tensor operations in this book are depicted by linear algebraic operation symbols of row array, column array, and two-dimensional matrix, making these operations easier to understand. In addition, for the integral of governing equations of motion, a set of ordinary differential equations for the finite element-based discrete system, the book discussed the implementation of implicit solvers in detail and introduced the well-developed RADAU IIA algorithms based on post-error estimation to make the contents of the book complete. The intended readers of this book are senior engineers and graduate students in related engineering fields.










Flexible Multibody System Dynamics: Theory And Applications


Book Description

This volume examines the theoretical and practical needs on the subject of multibody system dynamics with emphasis on flexible systems and engineering applications. lt focuses on developing an all purpose algorithm for the dynamic simulation of flexible tree-like systems making use of matrix representation at all levels. The book covers new theories with engineering applications involved in broad fields which include; civil engineering, aerospace and robotics, as well as general and mechanical engineering. The applications include high temperature conditions, time variant contact conditions, biosystem analysis, vibration minimization and control.




Multi-body Dynamics


Book Description

Multi-body dynamics describes the physics of motion of an assembly of constrained or restrained bodies. As such it encompasses the behaviour of nearly every living or inanimate object in the universe. Multi-body dynamics - Monitoring and Simulation Techniques III includes papers from leading academic researchers, professional code developers, and practising engineers, covering recent fundamental advances in the field, as well as applications to a host of problems in industry.They broadly cover the areas: Multi-body methodology Structural dynamics Engine dynamics Vehicle dynamics - ride and handling Machines and mechanisms Multi-body Dynamics is a unique volume, describing the latest developments in the field, supplemented by the latest enhancements in computer simulations, and experimental measurement techniques. Leading industrialists explain the importance attached to these developments in industrial problem solving.




Dynamics of Multibody Systems


Book Description

Multibody systems are the appropriate models for predicting and evaluating performance of a variety of dynamical systems such as spacecraft, vehicles, mechanisms, robots or biomechanical systems. This book adresses the general problem of analysing the behaviour of such multibody systems by digital simulation. This implies that pre-computer analytical methods for deriving the system equations must be replaced by systematic computer oriented formalisms, which can be translated conveniently into efficient computer codes for - generating the system equations based on simple user data describing the system model - solving those complex equations yielding results ready for design evaluation. Emphasis is on computer based derivation of the system equations thus freeing the user from the time consuming and error-prone task of developing equations of motion for various problems again and again.




Multibody Dynamics


Book Description

This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Université catholique de Louvain, from 4th to 7th July 2011. Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics methodologies to a wide range of areas of scientific and engineering relevance.




Dynamics of Multibody Systems


Book Description

Dynamics of Multibody Systems, 3rd Edition, first published in 2005, introduces multibody dynamics, with an emphasis on flexible body dynamics. Many common mechanisms such as automobiles, space structures, robots and micromachines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale, multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. This revised third edition now includes important developments relating to the problem of large deformations and numerical algorithms as applied to flexible multibody systems. The book's wealth of examples and practical applications will be useful to graduate students, researchers, and practising engineers working on a wide variety of flexible multibody systems.




Advances in Computational Multibody Systems


Book Description

Among all the fields in solid mechanics the methodologies associated to multibody dynamics are probably those that provide a better framework to aggregate different disciplines. This idea is clearly reflected in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, or in finite elements where the multibody dynamics provides powerful tools to describe large motion and kinematic restrictions between system components, or in system control for which multibody dynamics are the prime form of describing the systems under analysis, or even in applications with fluid-structures interaction or aeroelasticity. This book contains revised and enlarged versions of selected communications presented at the ECCOMAS Thematic Conference in Multibody Dynamics 2003 that took place in Lisbon, Portugal, which have been enhanced in their self-containment and tutorial aspects by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers and helps to appraise the potential of application of multibody dynamics to a wide range of scientific and engineering areas of relevance.




Robot and Multibody Dynamics


Book Description

Robot and Multibody Dynamics: Analysis and Algorithms provides a comprehensive and detailed exposition of a new mathematical approach, referred to as the Spatial Operator Algebra (SOA), for studying the dynamics of articulated multibody systems. The approach is useful in a wide range of applications including robotics, aerospace systems, articulated mechanisms, bio-mechanics and molecular dynamics simulation. The book also: treats algorithms for simulation, including an analysis of complexity of the algorithms, describes one universal, robust, and analytically sound approach to formulating the equations that govern the motion of complex multi-body systems, covers a range of more advanced topics including under-actuated systems, flexible systems, linearization, diagonalized dynamics and space manipulators. Robot and Multibody Dynamics: Analysis and Algorithms will be a valuable resource for researchers and engineers looking for new mathematical approaches to finding engineering solutions in robotics and dynamics.