Nanocrystals Forming Mesoscopic Structures


Book Description

Focusing on both academic questions and applications of self-assembly of this extremely important class of compounds, this book discusses not only the self-organization of inorganic and magnetic nanocrystals, but also their collective optical and magnetic properties, as well as the in-situ fabrication of metal nanoparticles in solid matrices. Professor Marie-Paule Pileni, a distinguished leader in this field, is joined by a select group of expert authors to provide 14 chapters covering important aspects of self-assembled nanomaterials. The result is invaluable reading for inorganic and physical chemists, colloid chemists, polymer chemists, materials scientists, physicists, and chemical engineers working with and/or developing nanoparticle systems.




Metal Nano 3D Superlattices


Book Description

Metal Nano 3D Superlattices Unique view on producing metal nano 3D superlattices by differing their morphologies, crystalline structures, chemical, and physical properties After presenting an overview on the various factors involved in producing metal 3D superlattices called supracrystals by differing their morphologies, crystalline structures, chemical, physical, and intrinsic properties, Metal Nano 3D Superlattices: Synthesis, Properties, and Applications reveals the existence of new materials with unexpected properties. Readers will gain insight into the various approaches on the production and on the specific properties of nanocrystals self-assembled in 3D superlattices also called colloidal crystals, supra or super crystals. These properties open up new avenues of research and potentially aiding in major progress. Overall, the work reviews the progress of and gives perspective on assembled nanocrystals, with a concentrated focus on self-assemblies of metal nanocrystals. Sample topics covered by the highly qualified and internationally awarded author include: Syntheses of nanocrystals with low size distribution. The wide variety of self-assembled nanocrystals in 3D superlattices strongly depends on an impressive number of parameters. The intrinsic chemical and physical properties of 3D superlattices of nanocrystals opens the way to the discovery of unexpected properties. This concerns growth processes, coherent breathing of in 3D superlattices, electron transport through thick assemblies, etc. A strong analogy between atomic crystals and 3D superlattices of nanocrystals emerge: incompressible nanocrystals and coating agents act as mechanical springs holding together the nanocrystals and replace respectively, in atomic crystals, atoms and atomic bonds. The intrinsic chemical and physical properties of nanocrystals and their assemblies depend on their crystalline structures called nanocrystallinity. Collective properties due to dipolar interactions between nanocrystals are pointed out. Water soluble suprastructures act as efficient universal nanoheaters. In addition, reconstruction near the cytoplasmic membrane in tumor cells of nanocrystal self-assemblies takes place opening various biomedical applications. The physical (optical, magnetic, electronic, vibrational) properties of isolated nanocrystals remain present in addition to the intrinsic and collective properties. This allows to benefit from the unique properties of nanocrystals while avoiding their potential size-related risks in future applications. Metal Nano 3D Superlattices offers a deep dive into their synthesis, chemical and physical properties, and applications and is an essential resource for inorganic chemists, materials scientists, physical chemists, surface chemists, and medicinal chemists conducting research related to or involved in the practical application of the topics covered within.




Nanoalloys


Book Description

Nanoalloys, Second Edition, provides a self-contained reference on the physics and chemistry of nanoscale alloys, dealing with all important aspects that range from the theoretical concepts and the practical synthesis methods to the characterization tools. The book also covers modern applications of nanoalloys in materials science, catalysis or nanomedicine and discusses their possible toxicity. - Covers fundamentals and applicative aspects of nanoalloys in a balanced presentation, including theoretical and experimental perspectives - Describes physical and chemical approaches, synthesis and characterization tools - Illustrates the potential benefit of alloying on various applications ranging from materials science to energy production and nanomedicine - Updates and adds topics not fully developed at the time of the 1st edition, such as toxicity and energy applications




Nanotechnology Research Advances


Book Description

Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometre is a billionth of a metre, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book leading-edge research from around the world in this dynamic field.




Nanoparticle Technologies


Book Description

Nanoparticle integration remains a very challenging issue for both experimentalists and theoreticians. 1D, 2D, and 3D structures are obtained using a variety of techniques. Depending on the application, nanoparticle-based films are required to be dense, porous, or grainy. Obtaining and controlling nanoparticle assembly is difficult due to contributions from numerous interparticle and nanoparticle substrate forces with relatively similar amplitudes. Besides size distribution and concentration, energy input, temperature, and pressure during deposition are three important parameters used to control film characteristics. Self-assembling monolayer, spray, Langmuir–Blodgett, layer-by-layer, electrophoretic deposition, and evaporation-driven self-assembly are simple and scalable techniques. Depending on the application requirements, numerous other integration methods are available. Templating, dip coating, tape casting, inkjet printing, screen printing, and electrostatic self-assembly have been used in commercial and pre-commercial solutions. The majority of these techniques do not require high capital cost and are quite easily amenable to roll-to-roll processes. Mechanical consolidation techniques are used to produce directly integrated nanoparticle-based material structures.




Polymer Thin Films


Book Description

Polymer thin films is an emerging area driven by their enormous technological potential and the intellectually challenging academic problems associated with them. This book contains a collection of review articles on the current topics of polymer films written by leading experts in the field. To reflect the interdisciplinary nature of this field, the contributors hail from a wide range of disciplines, including chemists, chemical engineers, materials scientists, engineers, and physicists. The goal of this book is to provide readers, whether involved in or outside of the field of polymer films, with an encompassing and informative reference.




Nanoalloys


Book Description




Magnetic Nanoparticles


Book Description

This interdisciplinary approach to the topic brings together reviews of the physics, chemistry, fabrication and application of magnetic nanoparticles and nanostructures within a single cover. With its discussion of the basics as well as the most recent developments, and featuring many examples of practical applications, the result is both a clear and concise introduction to the topic for beginners and a guide to relevant comprehensive physical phenomena and essential technological applications for experienced researchers.




Epoxy Polymers


Book Description

In the only book to focus on new developments and innovations in this hot field international experts from industry and academia present everything scientists need to know. The first section provides general concepts of the synthesis and properties of epoxy polymers and serves as a basis for the subsequent chapters. The second section includes new types of epoxy polymers recently commercialized or not yet present on the market, while the third section includes chapters related to the capacity of generating controlled nanostructures in epoxy-based materials. A fourth section is devoted to innovations in epoxy-based materials such as adhesives, coatings, pre-pregs, structural foams, injection-molded products and self-healing epoxies. Concluding remarks and perspectives are discussed in a short final section. The result is a one-stop reference source, collecting scientific and technological breakthroughs otherwise spread over hundreds of publications, patents and reports.




Encyclopedia of Biocolloid and Biointerface Science, 2 Volume Set


Book Description

Diese Enzyklopädie konzentriert sich einzig und allein auf Biokolloide und Biogrenzflächen. Hauptthema sind nicht die wissenschaftlichen Aspekte rund um Kolloide und Grenzflächen. Mit Biokolloiden und Biogrenzflächen beschäftigen sich immer mehr Wissenschaftler, und in dieser Enzyklopädie werden zur Untersuchung von Phänomen in biologischen Systemen "weiche Partikel" und "weiche Grenzflächen" als Oberflächenmodelle herangezogen. - Beschreibt detailliert die grundlegenden Theorien und erläutert die physikalisch-chemischen und theoretischen Aspekte der Biokolloid- und Biogrenzflächenwissenschaft. - Beinhaltet auch eine ausführliche Beschreibung der weichen Grenzflächen und Oberflächen - Beschäftigt sich ebenfalls mit Anwendungen der Grundlagentheorien von Biokolloiden und Biogrenzflächen auf die Nano-, Bio- und Umweltwissenschaften. Ein nützliches Nachschlagewerk genau zur richtigen Zeit, für Forscher und Absolventen im Bereich der Biokolloid- und Biogrenzflächenwissenschaft sowie für Ingenieure der Fachrichtungen.