Nanofillers


Book Description

1) Aids professionals in meeting an increasing demand for more sustainable materials which are biodegradable, as nanomaterials meet these criteria 2) Monitors the impact of organic nanofillers in promoting polymer circular economy 3) Discusses computational studies on the effect of nanofillers on polymer matrices 4) Looks at properties of nanofillers including the mechanical, thermal, electrical, optical, and magnetic properties




Nanofillers for Sustainable Applications


Book Description

Nanofillers for Sustainable Applications provides an in-depth review of the wide-ranging applications of nanofillers. It explores both synthetic and natural nanofillers and focuses on their use as reinforcement and active fillers in composite structures. Covering various aspects of nanofillers, including synthesis methods, characteristics, properties, and compatibility, this book highlights the potential of nanofillers as functional materials for different applications and offers a collection of comparative studies to showcase their efficacy. It emphasizes sustainability, intelligent design, and high-end applications in fields such as packaging, pulp and paper, aerospace, automotive, medicine, chemical industry, biodiesel, and chemical sensors. This book is organized into several sections, covering topics such as synthetic nanomaterials, nanosafety, natural nanofillers, polymer composites, metal nanofillers, nanofillers in various industries, nanofillers in renewable energy, nanofillers in biomedical sectors, and nanofillers in automotive and aerospace industries. This book will be a useful reference for undergraduate and graduate students and academic researchers in the fields of materials science, nanomaterials, and polymer composites. Key features: • Focuses on the fabrication approaches used for nanofillers in nanocomposites. • Covers materials selection, design solutions, manufacturing techniques, and structural analysis, highlighting their potential as functional materials in different applications. • Explores the positive environmental impact and material property improvements resulting from increased composite utilization across diverse industries. • Discusses other types of nanofillers like nanocellulose, metal-based, graphene, and wood-based materials. • Includes case studies from leading industrial and academic experts.




Nanofillers for Binary Polymer Blends


Book Description

Nanofillers for Binary Polymer Blends covers major advances in the field of polymer-blend nanocomposites. The book encompasses the fundamentals of polymer blends, various nanofillers, experimental techniques used in their fabrication, the characterization of various polymer blend nanocomposites, and theoretical evaluations of various properties. The properties and potential applications that have been achieved in various polymer blends by the addition of nanofillers are also highlighted. Applications for commercial products, including automotive parts, packaging, construction materials, biotechnology, medical devices, building materials, computer housings, car interiors, etc., are also covered in detail.This is an important reference source for materials scientists and engineers looking to increase their understanding of how nanofillers are being used in polymer blends. - Outlines the various types of nanofillers, explaining how the properties of each enhances the morphology, rheology, mechanical, dynamic mechanical, viscoelastic, electrical and thermal properties of polymer blends - Provides information on the theory, modeling and simulation of nano-filled polymer blends - Assesses the mechanism of selective localization of nanofillers in polymer blends, the effect of localization of nanofillers on the microstructure, and the relative performance of polymer blends




Hybrid Nanofillers for Polymer Reinforcement


Book Description

Hybrid Nanofillers for Polymer Reinforcement: Synthesis, Assembly, Characterization, and Applications provides a targeted approach to hybrid nanostructures, enabling the development of these advanced nanomaterials for specific applications. The book begins by reviewing the status of hybrid nanostructures, their current applications, and future opportunities. This is followed by chapters examining synthesis and characterization techniques, as well as interactions within nanohybrid systems. The second part of the book provides detailed chapters each highlighting a particular application area and discussing the preparation of various hybrid nano systems that can potentially be utilized in that area. The last chapters turn towards notable state-of-the-art hybrid nanomaterials and their properties and applications. This book is a valuable resource for researchers and advanced students across polymer science, nanotechnology, rubber technology, chemistry, sustainable materials, and materials engineering, as well as scientists, engineers, and R&D professionals with an interest in hybrid nanostructures or advanced nanomaterials for a industrial application. - Provides synthesis methods, characterization techniques, and structure-property analysis for hybrid nanostructures - Offers in-depth coverage that focuses on specific applications across energy storage, environment, automotive, aerospace, construction and biomedicine - Includes the latest novel areas, such as elastomeric hybrid nano systems, hybrid ceramic polymer nanocomposites, and self-assembled structures




Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications


Book Description

Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications offers a comprehensive paperback on the aerospace relevance of polymer/carbonaceous nanofiller-based nanocomposite. This manuscript summarizes all specific information on the design, fabrication and application areas of aerospace industry that employ polymer/carbonaceous nanofiller-based nanocomposites. In addition, it points to the potential of aeronautical nanocomposites towards lightning strike, radiation shielding, anti-corrosion, electronic/optical features, thermal management, antistatic application, self-healing aptitude, and green nanocomposites. The modeling of mechanical and essential properties of aerospace nanocomposites is also discussed, along with challenges and future forecasts of polymer/carbonaceous nanofiller nanocomposites. - Focuses on essential aerospace composites, carbonaceous nanofillers, and ensuing polymer/carbonaceous nanofiller-based nanocomposites - Explores indispensable properties of aeronautical nanocomposites, modeling of physical properties, and combined influence of carbonaceous nanofillers and carbon fibers on space material properties - Includes up-to-date technical applications of polymer/carbonaceous nanofiller-based nanocomposites in design, mechanical robustness, heat resistance, non-flammability, anti-corrosion, radiation shielding, lightning strike prevention, electronic/optical features, antistatic application, self-healing, thermal management, and green nanocomposites for aeronautical relevance




Carbon-Based Nanofillers and Their Rubber Nanocomposites


Book Description

Carbon-Based Nanofillers and their Rubber Nanocomposites: Fundamentals and Applications provides the synthetic routes, characterization, structural properties and effect of nano fillers on rubber nanocomposites. The synthesis and characterization of all carbon-based fillers is discussed, along with their morphological, thermal, mechanical, dynamic mechanical, and rheological properties. The book also covers the theory, modeling, and simulation aspects of these nanocomposites and their various applications. Users will find a valuable reference source for graduates and post graduates, engineers, research scholars, polymer engineers, polymer technologists, and those working in the biomedical field. - Reviews rubber nanocomposites, specifically carbon-associated nanomaterials (nanocarbon black, graphite, graphene, carbon nanotubes, fullerenes, diamond) - Presents the synthesis and characterization of carbon based nanocomposites - Relates the structure of these nanocomposites to their function as rubber additives and their many applications




Synthetic and Natural Nanofillers in Polymer Composites


Book Description

Synthetic and Natural Nanofillers in Polymer Composites: Properties and Applications provides a detailed review of nanofiller-based composite materials and structures and discusses their current and potential applications in industrial sectors. The book covers the mechanisms of using nanofillers as reinforcement, materials selection, properties and performance, structures, design solutions, and manufacturing techniques. A broad range of different material classes are also discussed, with an emphasis on advanced materials. Other topics covered include the development and performance analysis of hybrid composites, their lifecycle analysis, the effects of different fiber loadings, and mechanical, thermal and electrical performance. This book will be a valuable reference resource for materials scientists, engineers and academic and industrial researchers working in the field of polymer composites, specifically nanocomposites and applications based on synthetic and nanofiller-reinforced composites. - Covers both natural and synthetic filler-based composites and nanocomposites - Provides the latest on materials selection, design solutions, manufacturing techniques, structural analysis and performance - Includes case studies from leading industrial and academic experts who present cutting-edge research - Presents various applications, including chemical sensors, aerospace, automotive, batteries and green packaging




Mechanics of Nanomaterials and Polymer Nanocomposites


Book Description

This book delves into the mechanical analysis of the nanomaterials and polymer nanocomposite materials by shedding light on the mechanical performance of nanomaterials, elasticity and viscoelasticity behaviors of polymer nanocomposites, the laminate and sandwich theories, durability and fatigue behaviors. The chapters in this book bring together leading experts in the field to provide an update of the latest scientific results and a fully holistic understanding of the mechanical performance of these materials. The book interests the academic and industrial researchers, R&D managers and engineers working in material and nanomaterial sciences, polymer science and technology, automotive and aerospace engineering, construction and sporting goods, etc. The book also targets the readers that may have no prior knowledge about composite and nanocomposite materials.




The Structural Integrity of Carbon Fiber Composites


Book Description

This book brings together a diverse compilation of inter-disciplinary chapters on fundamental aspects of carbon fiber composite materials and multi-functional composite structures: including synthesis, characterization, and evaluation from the nano-structure to structure meters in length. The content and focus of contributions under the umbrella of structural integrity of composite materials embraces topics at the forefront of composite materials science and technology, the disciplines of mechanics, and development of a new predictive design methodology of the safe operation of engineering structures from cradle to grave. Multi-authored papers on multi-scale modelling of problems in material design and predicting the safe performance of engineering structure illustrate the inter-disciplinary nature of the subject. The book examines topics such as Stochastic micro-mechanics theory and application for advanced composite systems Construction of the evaluation process for structural integrity of material and structure Nano- and meso-mechanics modelling of structure evolution during the accumulation of damage Statistical meso-mechanics of composite materials Hierarchical analysis including "age-aware," high-fidelity simulation and virtual mechanical testing of composite structures right up to the point of failure. The volume is ideal for scientists, engineers, and students interested in carbon fiber composite materials, and other composite material systems.




Modification of Polymer Properties


Book Description

Modification of Polymer Properties provides, for the first time, in one title, the latest information on gradient IPNs and gradient copolymers. The book covers the broad range of polymer modification routes in a fresh, current view representing a timely addition to the technical literature of this important area. Historically, blends, copolymers, or filled polymers have been developed to meet specific properties, or to optimize the cost/properties relationship. Using the gradient structure approach with conventional radical polymerization, it has been shown that it is possible to optimize properties if appropriate gradients in the composition of copolymer chains are obtained. An overview of the gradient structure approach for designing polymers has not appeared in the recent literature and this title covers the different methods used to modify properties, offering the whole range of ways to modify polymers in just one volume and making this an attractive option for a wide audience of practitioners. The approach for each chapter is to explain the fundamental principles of preparation, cover properties modification, describe future research and applications as examples of materials that may be prepared for specific applications, or that are already in use, in present day applications. The book is for readers that have a basic background in polymer science, as well as those interested in the different ways to combine or modify polymer properties. - Provides an integrated view on how to modify polymer properties - Presents the entire panorama of polymer properties modification in one reference, covering the essential information in each topic - Includes the optimization of properties using gradients in polymers composition or structure