Nanomagnetic Materials


Book Description

Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism. - Explains manufacturing principles and process for nanomagnetic materials - Discusses physical and chemical properties and potential industrial applications, such as magnetic data storage, sensors, oscillator, permanent magnets, power generations, and biomedical applications - Assesses the major challenges of using magnetic nanomaterials on a broad scale




Magnetic Nano- and Microwires


Book Description

Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, alongside domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. - Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires - Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications - Combines the expertise of specialists from around the globe to give a broad overview of current and future trends




Nanomaterials and Devices


Book Description

Introducing the fields of nanomaterials and devices, and their applications across a wide range of academic disciplines and industry sectors, Donglu Shi bridges knowledge acquisition and practical work, providing a starting point for the research and development of applications. The book describes characterization of nanomaterials, their preparation methods and performance testing techniques; the design and development of nano-scale devices; and the applications of nanomaterials, with examples taken from different industry sectors, such as lighting, energy, bioengineering and medicine / medical devices. Key nanomaterial types are covered, such as carbon nanotubes, nanobiomaterials, nano-magnetic materials, semiconductor materials and nanocomposites. Shi also provides detailed coverage of key emerging technologies such as DNA nanotechnology and spintronics. The resulting text is equally relevant for advanced students (senior and graduate) and for engineers and scientists from a variety of different academic backgrounds working in the multi-disciplinary field of nanotechnology. - Provides detailed guidance for the characterization of nanomaterials, their preparation, and performance testing - Explains the principles and challenges of the design and development of nano-scale devices - Explores applications through cases taken from a range of different sectors, including electronics, energy and medicine.




Nanostructured Materials for Engineering Applications


Book Description

This book gives an introduction to nanostructured materials and guides the reader through their different engineering applications. It addresses the special phenomena and potentials involved in the applications without going into too much scientific detail of the physics and chemistry involved, which makes the reading interesting for beginners in the field. Materials for different applications in engineering are described, such as those used in opto-electronics, energy, tribology, bio-applications, catalysis, reinforcement and many more. In each application chapter, the reader will learn about the phenomena involved in the application, the nanostructured materials used in the field and their processing, besides finding some practical examples of their use in laboratories and in industry.The clear language and the application-oriented perspective of the book makes it suitable for both engineers and students who want to learn about applications of nanostructured materials in Engineering.




Nanomagnetism


Book Description

Nanomagnetism: An Interdisciplinary Approach provides a core foundation for understanding magnetic quantum-size effects at the nanoscale and their many applications across the disciplines. This textbook will be a valuable guide for students in new interdisciplinary courses in nanomagnetism and magnetic nanomaterials, an area that has experienced immense growth in the last two decades due to advancements in sample preparation, nanopatterning techniques and magnetic measurement instrumentation. The interdisciplinary nature of nanoscience also makes this book an ideal resource for scientists working in industrial laboratories and pharmaceutical and medical researchers looking to expand their understanding of the physics of magnetic probes. Key Features Discusses physical, chemical and nanotemplating synthesis techniques for the production of magnetic nanoparticles Covers experimental techniques for the determination of the macroscopic and microscopic magnetization of nanoparticles Discusses the role of nanomagnetism in high-density magnetic recording media, nanostructured permanent magnets, MRI imaging enhancement and magnetically guided drug delivery




Functionalized Nanomaterials Based Devices for Environmental Applications


Book Description

Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications. - Helps the reader to understand the basic principles of functionalization of nanomaterials - Highlights fabrication and characterization methods for functionalized nanomaterials-based environmental monitoring devices - Assesses the major challenges of creating devices using functionalized nanomaterials on a mass scale




Green Technologies and the Mobility Industry


Book Description

This book features 20 SAE technical papers, originally published in 2009 and 2010, which showcase how the mobility industry is developing greener products and staying responsive - if not ahead of - new standards and legal requirements. These papers were selected by SAE International's 2010 President Dr. Andrew Brown Jr., Executive Director and Chief Technologist for Delphi Corporation. Authored by international experts from both industry and academia, they cover a wide range of cutting-edge subjects including powertrain electrification, alternative fuels, new emissions standards and remediation strategies, nanotechnology, sustainability, in-vehicle networking, and how various countries are also stepping up to the "green challenge". Green Technologies and the Mobility Industry also offers additional useful information: the most recent Delphi Worldwide Emissions Standards booklets, which will be shipped with the print version of this title, or as part of the PDF download, if you purchase the ebook version. Exclusive Multimedia Package Watch Dr. Andrew Brown, Jr. describe the new trends in green mobility. Download a free SAE presentation on green technologies and the mobility industry. Challenging times: an interview with Dr. Andrew Brown, Jr. Buy the Set and Save! This book is the first in the trilogy from SAE on "Safe, Green and Connected" vehicles in the mobility industry edited by Dr. Andrew Brown, Jr. This trilogy can be purchased in a combination of the following sets: Green Technologies and Active Safety in the Mobility Industry Green Technologies and Connectivity in the Mobility Industry Active Safety and Connectivity in the Mobility Industry Buy the Entire 3 Volume Set to Save the Most! Green, Safe & Connected: The Future of Mobility




Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing


Book Description

Nanomagnetic and spintronic computing devices are strong contenders for future replacements of CMOS. This is an important and rapidly evolving area with the semiconductor industry investing significantly in the study of nanomagnetic phenomena and in developing strategies to pinpoint and regulate nanomagnetic reliably with a high degree of energy efficiency. This timely book explores the recent and on-going research into nanomagnetic-based technology. Key features: Detailed background material and comprehensive descriptions of the current state-of-the-art research on each topic. Focuses on direct applications to devices that have potential to replace CMOS devices for computing applications such as memory, logic and higher order information processing. Discusses spin-based devices where the spin degree of freedom of charge carriers are exploited for device operation and ultimately information processing. Describes magnet switching methodologies to minimize energy dissipation. Comprehensive bibliographies included for each chapter enabling readers to conduct further research in this field. Written by internationally recognized experts, this book provides an overview of a rapidly burgeoning field for electronic device engineers, field-based applied physicists, material scientists and nanotechnologists. Furthermore, its clear and concise form equips readers with the basic understanding required to comprehend the present stage of development and to be able to contribute to future development. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing is also an indispensable resource for students and researchers interested in computer hardware, device physics and circuits design.




Nanoscale Science and Technology


Book Description

Die Nanotechnologie ist ein relativ junges, stark aufstrebendes Forschungsgebiet. Durch seine ausgeprägte Interdisziplinarität müssen sich Absolventen der einzelnen naturwissenschaftlichen Fachrichtungen (etwa Physik, Chemie, Materialwissenschaften) gezielt weiterbilden, um in die Nanotechnologie einsteigen zu können. Als eines der ersten einschlägigen Bücher bereitet dieses Werk das Gebiet praxisorientiert und anschaulich speziell für diesen Zweck auf.