Handbook of Nanomaterials for Industrial Applications


Book Description

Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry. - Demonstrates how cutting-edge developments in nanomaterials translate into real-world innovations in a range of industry sectors - Explores how using nanomaterials can help engineers to create innovative consumer products - Discusses the legal, economical and toxicity issues arising from the industrial applications of nanomaterials




Green Nanomaterials for Industrial Applications


Book Description

Green Nanomaterials for Industrial Applications explores the applications of nanomaterials for a variety of industry sectors, along with their environmental impacts, lifecycle analysis, safety and sustainability. This book brings together the industrial applications of nanomaterials, covering new trends and challenges. Significant properties, safety and sustainability and environmental impacts of synthesis routes are also explored, as are major industrial applications, including agriculture, medicine, communications, construction, energy, and in the military. This book is an important information source for those in research and development who want to gain a greater understanding of how nanotechnology is being used to create cheaper, more efficient products. Green nanomaterials have significant advantages including low cost, high efficiency, neutral environmental impact, and stability. Green Nanomaterials for Industrial Applications provides comprehensive information about green nanomaterials, their types, and methods for generation, characterization as well as their properties. Furthermore, this book also provides coverage of industrial scale fabrication methods for green nanomaterials and their applications for various industrial sectors at both experimental and theoretical models scales. This book is an important reference source for materials scientists, engineers and environmental scientists who want to learn more about how sustainable nanomaterials are being used in a range of industrial applications. - Explores industrial scale fabrication of green nanomaterials - Assesses environmental, legal, health and safety aspects - Discusses how green nanomaterials can be manufactured on an industrial scale




Nanomaterials in Industrial Chemistry


Book Description

This book provides a comprehensive exploration of nanomaterials, offering insights into their diverse morphologies and applications. Chapters delve into the industrial potential of nanocellulose-based aerogels, the future of light-driven and UV-photodetector materials, and the use of functionalized nanomaterials for wastewater restoration. It explores the pivotal role of nanobiotechnology in water purification and introduces nanopharmaceuticals as a promising frontier in clinical medicine. The book addresses safety concerns related to occupational exposure to nanomaterials, highlighting hazards and toxicity. Additionally, it discusses the environmental effects of nanotechnology innovation. This multifaceted approach caters to professionals, researchers, and enthusiasts navigating the evolving landscape of nanomaterials.




Environmental Functional Nanomaterials


Book Description

Environmental Functional Nanomaterials covers the molecular structure and properties of nanomaterials used to remove refractory pollutants from industrial wastewaters and the environment with high efficiency. Insights into the innovations in the production of these new nanomaterials are provided. This book is ideal for career starters and students of materials science, environmental science, and chemistry.




Chemical Methods for Processing Nanomaterials


Book Description

This book discusses the latest advancements in the processing of various types of nanomaterials. The main objective of the book is to provide the reader with a comprehensive review of the latest advances in synthesis as well as processing of almost all kinds of nanomaterials using various physical and chemical methods. The book includes chapters on Chemical Methods such as microemulsions, colloidal route, wet chemical method, chemical vapor deposition technique, sol-gel method, electrodeposition for growing different kinds of nanomaterials including Chalcogenides, Metal Oxide nanostructures, perovskite nanocrystals, nano structures on patterned electrode, Low Dimensional Carbon Nanomaterials and applications at Nanoscale.




Handbook of Functionalized Nanomaterials


Book Description

Handbook of Functionalized Nanomaterials: Environmental Health and Safety discusses the reactive properties of FNMs used in a range of applications, and their toxic impact on the environment. Nanomaterials have unique properties that can make them highly reactive. This reactivity can cause unwanted interactions with living cells, an increase in oxidative stress or damage to genetic material - resulting in damage to the environment and local wildlife. This negative impact is often further increased after surface functionalization of nanomaterials with other materials which offer unique properties of their own. To ensure environmental safety and ecological balance, rigorous toxicity testing of functionalized nanomaterials (FNMs) is necessary. This book discusses the toxicological uncertainties of FNMs and the limitations of FNMs in a range of applications. Later chapters propose methods to reliably assess the harm that functionalized nanomaterials can cause to the environment and wildlife, as well covering recent developments in the field of environmental health safety. The book concludes with a discussion on the future prospects of safe functionalized nanomaterials. - Offers a novel, integrated approach, bridging the gap between FNMs and environmental health and safety - Analyses the reactive properties of FNMs and their toxicological potential - Provides an in-depth look at the impact of functionalized nanomaterials on the environment




Nanomaterials in Manufacturing Processes


Book Description

In the manufacturing sector, nanomaterials offer promising outcomes for cost reduction in production, quality improvement, and minimization of environmental hazards. This book focuses on the application of nanomaterials across a wide range of manufacturing areas, including in paint and coatings, petroleum refining, textile and leather industries, electronics, energy storage devices, electrochemical sensors, as well as in industrial waste treatment. This book: Examines nanofluids and nanocoatings in manufacturing and their characterization. Discusses nanomaterial applications in fabricating lightweight structural components, oil refining, smart leather processing and textile industries, and the construction industry. Highlights the role of 3D printing in realizing the full potential of nanotechnology. Considers synthetic strategies with a focus on greener protocols for the fabrication of nanostructured materials with enhanced properties and better control, including these materials' characterization and significant properties for ensuring smart outputs. Offers a unique perspective on applications in industrial waste recycling and treatment, along with challenges in terms of safety, economics, and sustainability in industrial processes. This work is written for researchers and industry professionals across a variety of engineering disciplines, including materials, manufacturing, process, and industrial engineering.




Nanochemistry


Book Description

International interest in nanoscience research has flourished in recent years, as it becomes an integral part in the development of future technologies. The diverse, interdisciplinary nature of nanoscience means effective communication between disciplines is pivotal in the successful utilization of the science. Nanochemistry: A Chemical Approach to Nanomaterials is the first textbook for teaching nanochemistry and adopts an interdisciplinary and comprehensive approach to the subject. It presents a basic chemical strategy for making nanomaterials and describes some of the principles of materials self-assembly over 'all' scales. It demonstrates how nanometre and micrometre scale building blocks (with a wide range of shapes, compositions and surface functionalities) can be coerced through chemistry to organize spontaneously into unprecedented structures, which can serve as tailored functional materials. Suggestions of new ways to tackle research problems and speculations on how to think about assembling the future of nanotechnology are given. Primarily designed for teaching, this book will appeal to graduate and advanced undergraduate students. It is well illustrated with graphical representations of the structure and form of nanomaterials and contains problem sets as well as other pedagogical features such as further reading, case studies and a comprehensive bibliography.




Sustainable Nanoscale Engineering


Book Description

Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing presents the latest on the design of nanoscale materials and their applications in sustainable chemical production processes. The newest achievements of materials science, in particular nanomaterials, opened new opportunities for chemical engineers to design more efficient, safe, compact and environmentally benign processes. These materials include metal-organic frameworks, graphene, membranes, imprinted polymers, polymers of intrinsic microporosity, nanoparticles, and nanofilms, to name a few. Topics discussed include gas separation, CO2 sequestration, continuous processes, waste valorization, catalytic processes, bioengineering, pharmaceutical manufacturing, supercritical CO2 technology, sustainable energy, molecular imprinting, graphene, nature inspired chemical engineering, desalination, and more. - Describes new, efficient and environmentally accepted processes for nanomaterials design - Includes a large array of materials, such as metal-organic frameworks, graphene, imprinted polymers, and more - Explores the contribution of these materials in the development of sustainable chemical processes