Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices


Book Description

Annotation This resource outlines the new tools that are becoming available in nanomedicine. The book presents an integrated set of perspectives that describe where advancements are now and where they should be headed to put nanomedicine devices into applications as quickly as possible




Nanomedical Device and Systems Design


Book Description

Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devic




Comprehensive Biomaterials II


Book Description

Comprehensive Biomaterials II, Second Edition, Seven Volume Set brings together the myriad facets of biomaterials into one expertly-written series of edited volumes. Articles address the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, research and development, regulatory management, commercial aspects, and applications, including medical applications. Detailed coverage is given to both new and emerging areas and the latest research in more traditional areas of the field. Particular attention is given to those areas in which major recent developments have taken place. This new edition, with 75% new or updated articles, will provide biomedical scientists in industry, government, academia, and research organizations with an accurate perspective on the field in a manner that is both accessible and thorough. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance, and future prospects Covers all significant emerging technologies in areas such as 3D printing of tissues, organs and scaffolds, cell encapsulation; multimodal delivery, cancer/vaccine - biomaterial applications, neural interface understanding, materials used for in situ imaging, and infection prevention and treatment Effectively describes the many modern aspects of biomaterials from basic science, to clinical applications




Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications


Book Description

Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications delivers essential and advanced bioengineering information on the application of control and robotics technologies in the life sciences. Judging by what we have witnessed so far, this exciting field of control systems and robotics in bioengineering is likely to produce revolutionary breakthroughs over the next decade. While this book is intended for senior undergraduate or graduate students in both control engineering and biomedical engineering programs, it will also appeal to medical researchers and practitioners who want to enhance their quantitative understanding of physiological processes. - Focuses on the engineering and scientific principles underlying the extraordinary performance of biomedical robotics and bio-mechatronics - Demonstrates the application of principles for designing corresponding algorithms - Presents the latest innovative approaches to medical diagnostics and procedures, as well as clinical rehabilitation from the point-of-view of dynamic modeling, system analysis and control




Nanotube Superfiber Materials


Book Description

Medical change is coming. Robots and tiny machines built using nanoscale materials are going to fundamentally change engineering at the microscale and medicine will be the first area to benefit. In tiny machine design, copper and iron are replaced with carbon nanotube superfiber wire and magnetic nanocomposite materials. Because of the small size of tiny machines, high magnetic fields can be generated and high-force, high-speed devices can be built. Tiny machines are still in the early stages of being built and this chapter describes their engineering design and the work underway to build them. The tiny machines will operate inside the body and detect disease at an early stage, then provide precise therapy or surgery. There will also be engineering applications for the tiny machines such as performing high-throughput manufacturing operations at the microscale. The design principles and materials processing techniques described herein will facilitate the development of nanomaterial robots and tiny machines for myriad applications ranging from miniaturized sensors, actuators, energy harvesting devices, high-performance electric motors, and energy storage devices to smart structures with built-in artificial responsive behavior.




Nanotube Superfiber Materials


Book Description

Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I: Processing; Part II: Properties; and Part III: Applications. Processing involves nanotube synthesis and macro scale material formation methods. Properties covers the mechanical, electrical, chemical and other properties of nanotubes and macroscale materials. Different approaches to growing high quality long nanotubes and spinning the nanotubes into yarn are explained in detail. The best ideas are collected from all around the world including commercial approaches. Applications of nanotube superfiber cover a huge field and provides a broad survey of uses. The book gives a broad overview starting from bioelectronics to carbon industrial machines. - First book to explore the production and applications of macro-scale materials made from nano-scale particles - Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials - Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others




Advances in Nanotechnology for Marine Antifouling


Book Description

Advances in Nanotechnology for Marine Antifouling surveys the latest research in the application of nanotechnology for biofouling inhibition. The book gathers in-depth information on the various micro and nano-techniques, nanocoatings, polymeric composites paints, methods of application and prevention mechanisms. This is a valuable resource for researchers and advanced students across anti-biofouling, nanotechnology, nanomaterials, polymer nanocomposites, coatings, maritime technology, chemistry, chemical engineering, environmental science, and materials science and engineering. This is also essential reading for industrial scientists, engineers, R&D, and other professionals with an interest in the use of nanotechnology for antifouling, particularly in the maritime sector. Nanotechnologies have been recognized as a powerful tool in antifouling strategies with nanocoatings with efficient properties enabling increased durability and performance in the prevention of biofouling and corrosion while replacing potentially more harmful chemicals. Examines the fundamentals of biofouling, conventional techniques, modeling and simulation, and biofouling based on natural materials Provides detailed techniques for antifouling mechanisms and materials with a range of specific properties or applications Addresses key environmental challenges, including risks of novel nanomaterials and coatings, development of eco-friendly nanocoatings, regulations and future scope




Pharmaceutical industry 4.0: Future, Challenges & Application


Book Description

The pharmaceutical industry is on the cusp of a new age, with the need for personalized therapy, more complex production processes, smaller batch sizes and rising manufacturing costs. It is necessary to continuously adapt to the rapidly changing environment using novel technology and improved operational efficiency and flexibility. To achieve this, intelligent manufacturing seems to be a definite answer. Pharma 4.0 is a framework for adapting digital strategies to the unique contexts of pharmaceutical manufacturing. This book provides a deep insight into key technologies that will modernize pharmaceutical manufacturing and facilitate digital transformation. Throughout the book we discuss technologies, application and challenges for applying digital technology in pharmaceutical industry, including: • Focus on an overview of Industry 4.0 and its application in the pharmaceutical field • Most recent advances in the pharmaceutical industry • Understanding the concepts of emerging technology trends for drug discovery.




Recent Trends in Nanomedicine and Tissue Engineering


Book Description

Recent trends in Nanomedicine and Tissue Engineering covers numerous recent technological and research accomplishments in the area of Nanomedicine and Tissue Engineering. The introduction of nanomaterials and nanotechnology have led to crucial advancements in the fields of nanomedicine and tissue engineering, as well as cancer therapies and drug delivery systems.The book follows recent trends in drug delivery systems, wound healing fields, cancer therapies, protection of teeth and also other health care systems.Technical topics discussed in the book include:• Nanorobots• Tissue engineering• Gene therapy• Drug delivery• Nanomotors• Nanogels.




Polymeric Nanomaterials in Nanotherapeutics


Book Description

Polymeric Nanomaterials in Nanotherapeutics describes how polymeric nanosensors and nanorobotics are used for biomedical instrumentation, surgery, diagnosis and targeted drug delivery for cancer, pharmacokinetics, monitoring of diabetes and healthcare. Key areas of coverage include drug administration and formulations for targeted delivery and release of active agents (drug molecules) to non-healthy tissues and cells. The book demonstrates how these are applied to dental work, wound healing, cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, chronic inflammatory diseases, metabolic diseases, and more. Methods of administration discussed include oral, dental, topical and transdermal, pulmonary and nasal, ocular, vaginal, and brain drug delivery and targeting. Drug delivery topics treated in several subchapters includes materials for active targeting and cases study of polymeric nanomaterials in clinical trials. The toxicity and regulatory status of therapeutic polymeric nanomaterials are also examined. The book gives a broad perspective on the topic for researchers, postgraduate students and professionals in the biomaterials, biotechnology, and biomedical fields. - Shows how the properties of polymeric nanomaterials can be used to create more efficient medical treatments/therapies - Demonstrates the potential and range of applications of polymeric nanomaterials in disease prevention, diagnosis, drug development, and for improving treatment outcomes - Accurately explains how nanotherapeutics can help in solving problems in the field through the latest technologies and formulations