Gas-Phase Synthesis of Nanoparticles


Book Description

The first overview of this topic begins with some historical aspects and a survey of the principles of the gas aggregation method. The second part covers modifications of this method resulting in different specialized techniques, while the third discusses the post-growth treatment that can be applied to the nanoparticles. The whole is rounded off by a review of future perspectives and the challenges facing the scientific and industrial communities. An excellent resource for anyone working with the synthesis of nanoparticles, both in academia and industry.




Statistical Physics of Nanoparticles in the Gas Phase


Book Description

Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. The second edition of this book follows the logic of first edition, with an emphasis on presentation of literature results and to guide the reader through derivations. Several topics have been added to the repertoire, notably magnetism, a fuller exposition of aggregation and the related area of nucleation theory. Also a new chapter has been added on the transient hot electron phenomenon. The book remains focused on the fundamental properties of nanosystems in the gas phase. Each chapter is enriched with additional new exercises and three Appendices provide additional useful material.




Metal Oxide Nanoparticles, 2 Volume Set


Book Description

Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.




Cluster Beam Deposition of Functional Nanomaterials and Devices


Book Description

Cluster Beam Deposition of Functional Nanomaterials and Devices, Volume 15, provides up-to-date information on the CBD of novel nanomaterials and devices. The book offers an overview of gas phase synthesis in a range of nanoparticles, along with discussions on the development of several devices and applications. Applications include, but are not limited to catalysis, smart nanocomposites, nanoprobes, electronic devices, gas sensors and biosensors. This is an important reference source for materials scientists and engineers who want to learn more about this sustainable, innovative manufacturing technology. - Explores the use of CBD for the fabrication of functionalized nanomaterials and devices - Shows how CBD is used for both sensing and biomedical applications - Discusses how this emerging technology is being commercialized for use on a large-scale




Nanoparticle Technology Handbook


Book Description

Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.




Spark Ablation


Book Description

Spark ablation has been used worldwide for decades. However, in many fields, the special properties of nanoparticles, which come into play especially for sizes




Gold Nanoparticles For Physics, Chemistry And Biology (Second Edition)


Book Description

Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.




Gas Phase Nanoparticle Synthesis


Book Description

This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology—a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability. Nanotechnology is popular today. However, basic scientific aspects of the relevant, underlying processes have not received sufficient attention. This book fills the gap in the current literature by addressing certain fundamentals of gas-phase nanoparticle synthesis. Chapters cover topics such as forces within and dynamics of nanoparticle systems, gas evaporation and deposition, laser assisted nanoparticle synthesis, and nanoparticle fabrication via flame processes. A chapter on in-situ structural studies of nanoparticles undergoing growth complements the exposition.




Nanoparticles from the Gasphase


Book Description

Gasphase synthesis of nanoparticles and nanostructured materials offers high chemical purity and crystalline quality as well as scalability up to industrial quantities. It is therefore highly attractive for both basic and applied science. This book gives a broad and coherent overview of the complete production and value chain from nanoparticle formation to integration into products and devices. Written by experts in the field – with backgrounds in electrical engineering, experimental and theoretical physics, materials science, and chemical engineering – the book offers a deep insight into the fabrication, characterization and application of nanoparticles from the gasphase. The first part of the book, “Formation”, covers chemical and growth kinetics, in-situ diagnostics, numerical simulation, process development and material deposition. In the second section, the reader is introduced to the structure and dynamics that lead to functional nanoscale systems and materials. The third section, “Properties and Applications”, provides a detailed discussion of the optical, electronic, magnetic and chemical characteristics of nanostructures and demonstrates how these can be used in tailored materials and devices.




Applications of Nanomaterials in Agriculture, Food Science, and Medicine


Book Description

The uses of nanotechnologies continue to rise exponentially. Due to their multifaceted nature, nanomaterials have a vast amount of potential uses in various scientific professions. Professionals in sectors including agriculture, nutrition, and healthcare are discovering the numerous benefits that nanomaterials carry when applied to traditional practices. In order to understand the dynamic properties of nanomaterials and how to utilize them in specific fields, significant research is required. Applications of Nanomaterials in Agriculture, Food Science, and Medicine is an essential reference source that discusses the emerging development of nanotechnology in various sectors of the scientific community as well as the current benefits and future uses. Industries that the book covers include energy storage and renewable energy, environmental science and wastewater treatment, food and agriculture, and medicine and bioinformatics. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students seeking coverage on the strategic role of nanomaterials in these imperative fields.




Recent Books