Nanoscale Microwave Engineering


Book Description

This book targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge on atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures. It thus provides new graduates, PhD students and post-doctorates with a resource equipping them with the knowledge to undertake their research.




Microwave Engineering of Nanomaterials


Book Description

The use of microwaves has gradually democratized itself in several scientific areas and is now a common methodology in domains as different as chemistry, protein digestion, mining, and metallurgy. Materials chemistry is one field where microwave irradiation technologies are being studied. In recent years, development of nanotechnologies has increas




Nanostructuring Operations in Nanoscale Science and Engineering


Book Description

State-of-the-art nanostructuring principles, methods, and aplications Synthesize, characterize, and deploy highly miniaturized components using the theories and techniques contained in this comprehensive resource. Written by a nanotechnology expert, this authoritative volume covers the latest advances along with detailed schematics and real-world applications in engineering and the life sciences. Inside, 37 different nanostructuring methods and 16 different kinds of nanostructures are discussed. Nanostructuring Operations in Nanoscale Science and Engineering explains how to manufacture high-purity fullerenes, assemble carbon nanotubes, and use nanofluids and nanowires. You will also learn how to develop high-performance biochips, work with biomimetics, and design molecular machines. The book includes 540 end-of-chapter review questions to reinforce the material covered. Learn how to: Produce fullerenes using metallurgic, solar, and electric arc methods Use arc discharge, laser ablation, CVD, and HIPCO to create CNTs Build nanostructures with vacuum synthesis, gas evaporation, and lithography Work with quantum dots, polymer thin films, nanofluids, and nanoceramics Develop biochips, biological nanovalves, and molecular machines Mimic biological characteristics and organic self-repair using biomimetics Model nanoscale effects with relativistic and Laplace transforms Characterize nanoscale material using x-ray and helium ion microscope




Handbook of Nanoscale Optics and Electronics


Book Description

With the increasing demand for smaller, faster, and more highly integrated optical and electronic devices, as well as extremely sensitive detectors for biomedical and environmental applications, a field called nano-optics or nano-photonics/electronics is emerging – studying the many promising optical properties of nanostructures. Like nanotechnology itself, it is a rapidly evolving and changing field – but because of strong research activity in optical communication and related devices, combined with the intensive work on nanotechnology, nano-optics is shaping up fast to be a field with a promising future. This book serves as a one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments. - Provides overview of the field of Nano-optics/photonics and electronics, detailing practical examples of photonic technology in a wide range of applications - Discusses photonic systems and devices with mathematical rigor precise enough for design purposes - A one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments




Systems Engineering for Microscale and Nanoscale Technologies


Book Description

To realize the full potential of micro- and nanoscale devices in system building, it is critical to develop systems engineering methodologies that successfully integrate stand-alone, small-scale technologies that can effectively interface with the macro world. So how do we accomplish this?Systems Engineering for Microscale and Nanoscale Technologie




Nanoscience And Nanotechnology In Engineering


Book Description

The usage of nanoscience and nanotechnology in engineering directly links academic research in nanoscience and nanotechnology to industries and daily life. As a result, numerous nanomaterials, nanodevices and nanosystems for various engineering purposes have been developed and used for human betterment. This book, which consists of eight self-contained chapters, provides the essential theoretical knowledge and important experimental techniques required for the research and development on nanoscience and nanotechnology in engineering, and deals with the five key topics in this area — Nanoscience and Nanotechnology in Engineering is based on the many lectures and courses presented around the world by its authors.




Nanoscale Networking and Communications Handbook


Book Description

This comprehensive handbook serves as a professional reference as well as a practitioner's guide to today's most complete and concise view of nanoscale networking and communications. It offers in-depth coverage of theory, technology, and practice as they relate to established technologies and recent advancements. It explores practical solutions to a wide range of nanoscale networking and communications issues. Individual chapters, authored by leading experts in the field, address the immediate and long-term challenges in the authors' respective areas of expertise.




Swift Ion Beam Analysis in Nanosciences


Book Description

Swift ion beam analysis (IBA) of materials and their surfaces has been widely applied to many fields over the last half century, constantly evolving to meet new requirements and to take advantage of developments in particle detection and data treatment. Today, emerging fields in nanosciences introduce extreme demands to analysis methods at the nanoscale. This book addresses how analysis with swift ion beams is rising to meet such needs. Aimed at early stage researchers and established researchers wishing to understand how IBA can contribute to their analytical requirements in nanosciences, the basics of the interactions of charged particles with matter, as well as the operation of the relevant equipment, are first presented. Many recent examples from nanoscience research are then explored in which the specific analytical capabilities of IBA are emphasized, together with the place of IBA alongside the wealth of other analytical methods.




Simulation of Transport in Nanodevices


Book Description

Linear current-voltage pattern, has been and continues to be the basis for characterizing, evaluating performance, and designing integrated circuits, but is shown not to hold its supremacy as channel lengths are being scaled down. In a nanoscale circuit with reduced dimensionality in one or more of the three Cartesian directions, quantum effects transform the carrier statistics. In the high electric field, the collision free ballistic transform is predicted, while in low electric field the transport remains predominantly scattering-limited. In a micro/nano-circuit, even a low logic voltage of 1 V is above the critical voltage triggering nonohmic behavior that results in ballistic current saturation. A quantum emission may lower this ballistic velocity.




Nanothermites


Book Description

The recent introduction of the “nano” dimension to pyrotechnics has made it possible to develop a new family of highly reactive substances: nanothermites. These have a chemical composition that is comparable to that of thermites at submillimeter or micrometric granulometry, but with a morphology having a much increased degree of homogeneity. This book discusses the methods of preparation of these energetic nanomaterials, their specific properties, and the different safety aspects inherent in their manipulation.