Nanoscience and Engineering in Superconductivity


Book Description

For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.




Nanostructured Superconductors


Book Description

The main focus of the book is to present the effects of nanostructuring on superconducting critical parameters. Optimizing systematically flux and condensate confinement in various nanostructured superconductors, ranging from single nano-cells to their hu




Superconductors at the Nanoscale


Book Description

By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. Examples are energy saving solutions, healthcare, and communication technologies. Key ingredients are nanopatterned materials which help to improve the superconducting critical parameters and performance of superconducting devices, and lead to novel functionalities. Contents Tutorial on nanostructured superconductors Imaging vortices in superconductors: from the atomic scale to macroscopic distances Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy STM studies of vortex cores in strongly confined nanoscale superconductors Type-1.5 superconductivity Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films Artificial pinning sites and their applications Vortices at microwave frequencies Physics and operation of superconducting single-photon devices Josephson and charging effect in mesoscopic superconducting devices NanoSQUIDs: Basics & recent advances Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks as emitters of terahertz radiation| Interference phenomena in superconductor-ferromagnet hybrids Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids Superconductor/ferromagnet hybrids




Nanoscience and Nanotechnology in Engineering


Book Description

The usage of nanoscience and nanotechnology in engineering directly links academic research in the above two fields of nanoscience and nanotechnology to industries and daily life. As a result, numerous nanomaterials, nanodevices and nanosystems for various engineering purposes have been developed and used for human betterment. This book, which consists of eight self-contained chapters, provides the essential theoretical knowledge and important experimental techniques required for the research and development on nanoscience and nanotechnology in engineering, and deals with the five key topics in this area ? Nanoscience and Nanotechnology in Engineering is based on the many lectures and courses presented around the world by its authors.




Handbook of Nanoscience, Engineering, and Technology


Book Description

The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanote




Nano Science and Technology


Book Description

Nanoscience and technology is a rapidly developing area of research in physics, chemistry, and materials. This volume comsists of papers presented at the Advanced Study Institute in Hong Kong that explore developments in novel structures in phenomena of nanostructured materials. The topics include: two-dimensional nanoclusters on met




Superconductivity


Book Description

This book provides readers with a comprehensive overview of the science of superconducting materials. It serves as a fundamental information source on the actual techniques and methodologies involved in superconducting materials growth, characterization and processing. This book includes coverage of several categories of medium and high-temperature superconducting materials: cuprate oxides, borides, and iron-based chalcogenides and pnictides. Provides a single-source reference on superconducting materials growth, characterization and processing; Bridges the gap between materials science and applications of superconductors; Discusses several categories of superconducting materials such as cuprate oxides, borides, and iron-based chalcogenides and pnictides; Covers synthesis, characterization, and processing of superconducting materials, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.




Oxford Handbook of Nanoscience and Technology


Book Description

These three volumes are intended to shape the field of nanoscience and technology and will serve as an essential point of reference for cutting-edge research in the field.




Nanophysics and Nanotechnology


Book Description

Long awaited new edition of this highly successful textbook, provides once more a unique introduction to the concepts, techniques and applications of nanoscale systems by covering its entire spectrum up to recent findings on graphene.




The Oxford Handbook of Small Superconductors


Book Description

Mesoscopic superconductors achieve a level of smallness that reveals the dominance of strange quantum effects. In a world driven by the miniaturization of electronic device technology, small superconductors acquire great relevance and timeliness for the development of ground breaking novel quantum devices.