Nanostructure Control of Materials


Book Description

Annotation Nanotechnology is an area of science and technology where dimensions and tolerances in the range of 0.1 nm to 100nm play a critical role. Nanotechnology has opened up new worlds of opportunity. It encompasses precision engineering as well as electronics, electromechanical systems and mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques. Nanostructured materials present exciting opportunities for manipulating structure and properties on the nanometer scale. The ability to engineer novel structures at the molecular level has led to unprecedented opportunities for materials design. This new book provides detailed insights into the synthesis/structure and property relationships of nanostructured materials. A valuable book for materials scientists, mechanical and electronic engineers and medical researchers. CONTENTS Special properties resulting from nanodimensionality; Nanoparticle technologies; Control of molecular assemblies; Functional organic inorganic nanocomposites; Molecular modelling of nanomorphology in polymers; Nanodimensionality and ionic transport; Multi scale simulation of nanionic polymer systems; Nanoengineering in metallic systems; Characterisation of nanometallic systems with NMR; Mechanical behaviour of metallic nanolaminates; Mechanics of nanocomposite structures; Preparation, properties and performance of Nanocrystalline ceramics; Novel properties from nanoceramics; Hydrogen storage in nanostructured materials; Nanofabrication.




Nanostructure Control of Materials


Book Description

Annotation Nanotechnology is an area of science and technology where dimensions and tolerances in the range of 0.1 nm to 100nm play a critical role. Nanotechnology has opened up new worlds of opportunity. It encompasses precision engineering as well as electronics, electromechanical systems and mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques. Nanostructured materials present exciting opportunities for manipulating structure and properties on the nanometer scale. The ability to engineer novel structures at the molecular level has led to unprecedented opportunities for materials design. This new book provides detailed insights into the synthesis/structure and property relationships of nanostructured materials. A valuable book for materials scientists, mechanical and electronic engineers and medical researchers. CONTENTS Special properties resulting from nanodimensionality; Nanoparticle technologies; Control of molecular assemblies; Functional organic inorganic nanocomposites; Molecular modelling of nanomorphology in polymers; Nanodimensionality and ionic transport; Multi scale simulation of nanionic polymer systems; Nanoengineering in metallic systems; Characterisation of nanometallic systems with NMR; Mechanical behaviour of metallic nanolaminates; Mechanics of nanocomposite structures; Preparation, properties and performance of Nanocrystalline ceramics; Novel properties from nanoceramics; Hydrogen storage in nanostructured materials; Nanofabrication.




Nano and Microstructural Design of Advanced Materials


Book Description

The importance of the nanoscale effects has been recognized in materials research for over fifty years, but it is only recently that advanced characterization and fabrication methods are enabling scientists to build structures atom-by-atom or molecule-by molecule. The understanding and control of the nanostructure has been, to a large extent, made possible by new atomistic analysis and characterization methods pioneered by transmission electron microscopy. Nano and Microstructural Design of Advanced Materials focuses on the effective use of such advanced analysis and characterization techniques in the design of materials. - Teaches effective use of advanced analysis and characterization methods at an atomistic level - Contains many supporting examples of materials in which such design concepts have been successfully applied




Nanoparticle Technology Handbook


Book Description

Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.




Nanostructures for Antimicrobial Therapy


Book Description

Nanostructures for Antimicrobial Therapy discusses the pros and cons of the use of nanostructured materials in the prevention and eradication of infections, highlighting the efficient microbicidal effect of nanoparticles against antibiotic-resistant pathogens and biofilms. Conventional antibiotics are becoming ineffective towards microorganisms due to their widespread and often inappropriate use. As a result, the development of antibiotic resistance in microorganisms is increasingly being reported. New approaches are needed to confront the rising issues related to infectious diseases. The merging of biomaterials, such as chitosan, carrageenan, gelatin, poly (lactic-co-glycolic acid) with nanotechnology provides a promising platform for antimicrobial therapy as it provides a controlled way to target cells and induce the desired response without the adverse effects common to many traditional treatments. Nanoparticles represent one of the most promising therapeutic treatments to the problem caused by infectious micro-organisms resistant to traditional therapies. This volume discusses this promise in detail, and also discusses what challenges the greater use of nanoparticles might pose to medical professionals. The unique physiochemical properties of nanoparticles, combined with their growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles as antimicrobials. The importance of bactericidal nanobiomaterials study will likely increase as development of resistant strains of bacteria against most potent antibiotics continues. - Shows how nanoantibiotics can be used to more effectively treat disease - Discusses the advantages and issues of a variety of different nanoantibiotics, enabling medics to select which best meets their needs - Provides a cogent summary of recent developments in this field, allowing readers to quickly familiarize themselves with this topic area




Nanoscale Physics for Materials Science


Book Description

Although there are many books available on the preparation, properties, and characterization of nanomaterials, few provide an interdisciplinary account of the physical phenomena that govern the novel properties of nanomaterials. Addressing this shortfall, Nanoscale Physics for Materials Science covers fundamental cross-disciplinary concepts in mate




The Chemistry of Nanostructured Materials


Book Description

This book is a sequel to the first volume of The Chemistry of Nanostructured Materials. It covers the most exciting developments in the nanostructured materials field for the past five to ten years, with a particular focus on their applications in energy conversion and energy storage. Prominent authors of recognized authority in the field contribute their expertise in the review chapters.




Nanobiomaterials


Book Description

Nanobiomaterials: Nanostructured materials for biomedical applications covers an extensive range of topics related to the processing, characterization, modeling, and biomedical applications of nanostructured ceramics, polymers, metals, composites, self-assembled materials, and macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted. In addition, innovative techniques for characterizing the in vitro behavior and in vivo behavior of nanostructured biomaterials are considered. Applications of nanostructured biomaterials in dentistry, drug delivery, medical diagnostics, surgery and tissue engineering are examined. - Provides a concise description of the materials and technologies used in the development of nanostructured biomaterials - Provides industrial researchers with an up-to-date and handy reference on current topics in the field of nanostructured biomaterials - Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials




Nanostructures


Book Description

Inc., Portland, OR (booknews.com).




Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization


Book Description

As we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.