Nanotechnology for Electronics, Photonics, and Renewable Energy


Book Description

Tutorial lectures given by world-renowned researchers have become one of the important traditions of the Nano and Giga Challenges (NGC) conference series. 1 Soon after preparations had begun for the rst forum, NGC2002, in Moscow, Russia, the organizers realized that publication of the lectures notes would be a va- able legacy of the meeting and a signi cant educational resource and knowledge base for students, young researchers, and senior experts. Our rst book was p- lished by Elsevier and received the same title as the meeting itself—Nano and Giga 2 Challenges in Microelectronics. Our second book, Nanotechnology for Electronic 3 4 Materials and Devices, based on the tutorial lectures at NGC2004 in Krakow, 5 Poland, the third book from NGC2007 in Phoenix, Arizona, and the current book 6 from joint NGC2009 and CSTC2009 meeting in Hamilton, Ontario, have been published in Springer’s Nanostructure Science and Technology series. Hosted by McMaster University, the meeting NGC/CSTC 2009 was held as a joint event of two conference series, Nano and Giga Challenges (Nano & Giga Forum) and Canadian Semiconductor Technology Conferences (CSTC), bringing together the networks and expertise of both professional forums. Informational (electronics and photonics), renewable energy (solar systems, fuel cells, and batteries), and sensor (nano and bio) technologies have reached a new stage in their development in terms of engineering limits to cost-effective impro- ment of current technological approaches. The latest miniaturization of electronic devices is approaching atomic dimensions.




Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy


Book Description

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions; new materials are being introduced into electronics manufacturing at an unprecedented rate; and alternative technologies to mainstream CMOS are evolving. The low cost of natural energy sources have created economic barriers to the development of alternative and more efficient solar energy systems, fuel cells and batteries. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors,quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.




Nanotechnology In Electronics, Photonics, Biosensors And Energy Systems


Book Description

This unique compendium consists of peer-reviewed articles spanning from novel growth of materials for nanoelectronic and nanophotonic devices, electronic nose sensor array, bio-nano-systems, artificial intelligence/machine learning, and emerging technologies, to applications in each of these fields.Systems implementing additively manufactured RF devices for communication, packaging, remote sensing, compact multi-bit FETs and memories are also included.Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices. Quantum dot-based devices are discussed with regard to optical logic gates, mid-infrared photodetectors, gain and index tailored external cavity high power lasers.Contributed by eminent researchers, this useful reference text broadly illustrates relevant aspects of high-performance materials and emerging nanodevices for implementing high-speed electronic systems.




Semiconductor Nanotechnology


Book Description

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.




Nano-Bio- Electronic, Photonic and MEMS Packaging


Book Description

Nanotechnologies are being applied to the biotechnology area, especially in the area of nano material synthesis. Until recently, there has been little research into how to implement nano/bio materials into the device level. “Nano and Bio Electronics Packaging” discusses how nanofabrication techniques can be used to customize packaging for nano devices with applications to biological and biomedical research and products. Covering such topics as nano bio sensing electronics, bio device packaging, NEMs for Bio Devices and much more.




Nanotechnology for Electronics, Photonics, and Renewable Energy


Book Description

Tutorial lectures given by world-renowned researchers have become one of the important traditions of the Nano and Giga Challenges (NGC) conference series. 1 Soon after preparations had begun for the rst forum, NGC2002, in Moscow, Russia, the organizers realized that publication of the lectures notes would be a va- able legacy of the meeting and a signi cant educational resource and knowledge base for students, young researchers, and senior experts. Our rst book was p- lished by Elsevier and received the same title as the meeting itself—Nano and Giga 2 Challenges in Microelectronics. Our second book, Nanotechnology for Electronic 3 4 Materials and Devices, based on the tutorial lectures at NGC2004 in Krakow, 5 Poland, the third book from NGC2007 in Phoenix, Arizona, and the current book 6 from joint NGC2009 and CSTC2009 meeting in Hamilton, Ontario, have been published in Springer’s Nanostructure Science and Technology series. Hosted by McMaster University, the meeting NGC/CSTC 2009 was held as a joint event of two conference series, Nano and Giga Challenges (Nano & Giga Forum) and Canadian Semiconductor Technology Conferences (CSTC), bringing together the networks and expertise of both professional forums. Informational (electronics and photonics), renewable energy (solar systems, fuel cells, and batteries), and sensor (nano and bio) technologies have reached a new stage in their development in terms of engineering limits to cost-effective impro- ment of current technological approaches. The latest miniaturization of electronic devices is approaching atomic dimensions.




Nanoscale Applications for Information and Energy Systems


Book Description

Nanoscale Applications for Information and Energy Systems presents nanotechnology fundamentals and applications in the key research areas of information technology (electronics and photonics) and alternative (solar) energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching. The three major technology areas – electronics, photonics, and solar energy – are linked on the basis of similar applications of nanostructured materials in research and development. By bridging the materials physics and chemistry at the atomic scale with device and system design, integration, and performance requirements, tutorial chapters from worldwide leaders in the field provide a coherent picture of theoretical and experimental research efforts and technology development in these highly interdisciplinary areas.




Nanorobotics


Book Description

Nanorobots can be defined as intelligent systems with overall dimensions at or below the micrometer range that are made of assemblies of nanoscale components with individual dimensions ranging between 1 to 100 nm. These devices can now perform a wide variety of tasks at the nanoscale in a wide variety of fields including but not limited to fields such as manufacturing, medicine, supply chain, biology, and aerospace. Nanorobotics: Current Approaches and Techniques offers a comprehensive overview of this emerging interdisciplinary field with a wide ranging discussion that includes nano-manipulation and industrial nanorobotics, nanorobotic manipulation in biology and medicine, nanorobotic sensing, navigation and swarm behavior and CNT, and protein and DNA-based nanorobotics.




Advanced Nanomaterials for Biological, Nutraceutical, and Medicinal Applications


Book Description

This new volume discusses a selection of nanomaterials that can be employed for advanced biological, nutraceutical, and medicinal applications. It discusses diverse nanomaterials and their classifications, their advanced therapeutic properties, using biosensors in detecting biological threat agents, bionanomaterials for human health, the medicinal applications of nanomaterials, clinical toxicities of nanomaterials and their use in remediation. The book also includes a chapter that provides a helpful comparison of market analysis between biological and synthetic nanomaterials. The volume concludes with an insightful perspective on possible future applications of nanomaterials as nutraceutical, biological, and medicinal agents.




Handbook of Nanoscale Optics and Electronics


Book Description

With the increasing demand for smaller, faster, and more highly integrated optical and electronic devices, as well as extremely sensitive detectors for biomedical and environmental applications, a field called nano-optics or nano-photonics/electronics is emerging – studying the many promising optical properties of nanostructures. Like nanotechnology itself, it is a rapidly evolving and changing field – but because of strong research activity in optical communication and related devices, combined with the intensive work on nanotechnology, nano-optics is shaping up fast to be a field with a promising future. This book serves as a one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments. - Provides overview of the field of Nano-optics/photonics and electronics, detailing practical examples of photonic technology in a wide range of applications - Discusses photonic systems and devices with mathematical rigor precise enough for design purposes - A one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments